Sam's Laser FAQ, Copyright © 1994-2007, Samuel M. Goldwasser, All Rights Reserved.
I may be contacted via the
Sci.Electronics.Repair FAQ Email Links Page.

  • Back to Sam's Laser FAQ Table of Contents.

    Helium-Neon Lasers

    Sub-Table of Contents



  • Back to Sam's Laser FAQ Table of Contents.
  • Back to Helium-Neon Lasers Sub-Table of Contents.

    HeNe Laser Characteristics, Applications, Safety

    Note: Due to the amount of material, information on specific commercial helium-neon lasers has moved to its own chapter: Commercial HeNe Lasers.

    Introduction to Helium-Neon Lasers

    A helium-neon (henceforth abbreviated HeNe) laser is basically a fancy neon sign with mirrors at both ends. Well, not quite, but really not much more than this at first glance (though the design and manufacturing issues which must be dealt with to achieve the desired beam characteristics, power output, stability, and life span, are non-trivial). The gas fill is a mixture of helium and neon gas at low pressure. A pair of mirrors - one totally reflective (called the High Reflector or HR), the other partially reflective (called the Output Coupler or OC) at the wavelength of the laser's output - complete the resonator assembly. This is called a Fabry-Perot cavity (if you want to impress your friends). The mirrors may be internal (common on small and inexpensive tubes) or external (on precision high priced lab quality lasers). Electrodes sealed into the tube allow for the passage of high voltage DC current to excite the discharge.

    I still consider the HeNe laser to be the quintessential laser: An electrically excited gas between a pair of mirrors. It is also the ideal first laser for the experimenter and hobbyist. OK, well, maybe after you get over the excitement of your first laser pointer! :) HeNe's are simple in principle though complex to manufacture, the beam quality is excellent - better than anything else available at a similar price. When properly powered and reasonable precautions are taken, they are relatively safe if the power output is under 5 mW. And such a laser can be easily used for many applications. With a bare HeNe laser tube, you can even look inside while it is in operation and see what is going on. Well, OK, with just a wee bit of imagination! :) This really isn't possible with diode or solid state lasers.

    I remember doing the glasswork for a 3 foot long HeNe laser (probably based on the design from: "The Amateur Scientist - Helium-Neon Laser", Scientific American, September 1964, and reprinted in the collection: "Light and Its Uses" [5]). This included joining side tubes for the electrodes and exhaust port, fusing the electrodes themselves to the glass, preparing the main bore (capillary), and cutting the angled Brewster windows (so that external mirrors could be used) on a diamond saw. I do not know if the person building the laser ever got it to work but suspect that he gave up or went on to other projects (which probably were also never finished). And, HeNe lasers are one of the simplest type of lasers to fabricate which produce a visible continuous beam.

    Some die-hards still construct their own HeNe lasers from scratch. Once all the glasswork is complete, the tube must be evacuated, baked to drive off surface impurities, backfilled with a specific mixture of helium to neon (typically around 7:1 to 10:1) at a pressure of between 2 and 5 Torr (normal atmospheric pressure is about 760 Torr - 760 mm of mercury), and sealed. The mirrors must then be painstakingly positioned and aligned. Finally, the great moment arrives and the power is applied. You also constructed your high voltage power supply from scratch, correct? With luck, the laser produces a beam and only final adjustments to the mirrors are then required to optimize beam power and stability. Or, more, likely, you are doing all of this while your vacuum pumps are chugging along and you can still play with the gas fill pressure and composition. What can go wrong? All sorts of things can go wrong! With external mirrors, the losses may be too great resulting in insufficient optical gain in the resonant cavity. The gas mixture may be incorrect or become contaminated. Seals might leak. Your power supply may not start the tube, or it may catch fire or blow up. It just may not be your day! And, the lifetime of the laser is likely to end up being only a few hours in any case unless you have access to an ultra-high vacuum pumping and bakeout facility. While getting such a contraption to work would be an extremely rewarding experience, its utility for any sort of real applications would likely be quite limited and require constant fiddling with the adjustments. Nonetheless, if you really want to be able to say you built a laser from the ground up, this is one approach to take! (However, the CO2 and N2 lasers are likely to be much easier for the first-time laser builder.) See the chapters starting with: Amateur Laser Construction for more of the juicy details.

    However, for most of us, 'building' a HeNe laser is like 'building' a PC: An inexpensive HeNe tube and power supply are obtained, mounted, and wired together. Optics are added as needed. Power supplies may be home-built as an interesting project but few have the desire, facilities, patience, and determination to construct the actual HeNe tube itself.

    The most common internal mirror HeNe laser tubes are between 4.5" and 14" (125 mm to 350 mm) in overall length and 3/4" to 1-1/2" (19 mm to 37.5 mm) in diameter generating optical power from 0.5 mW to 5 mW. They require no maintenance and no adjustments of any kind during their long lifetime (20,000 hours typical). Both new and surplus tubes of this type - either bare or as part of complete laser heads - are readily available. Slightly smaller tubes (less than 0.5 mW) and much larger tubes (up to approximately 35 mW) are structurally similar (except for size) to these but are not as common.

    Much larger HeNe tubes with internal or external mirrors or one of each (more than a *meter* in length!) and capable of generating up to 250 mW of optical power have been available and may turn up on the surplus market as well (but most of these are quite dead by now). Even more powerful ones have been built as research projects. The largest HeNe lasers in current production are rated between 35 to 50 mW.

    Highly specialized configurations, such as a triple XYZ axis triangular cavity HeNe laser in a solid glass block for an optical ring laser gyro, also exist but are much much less common. Common HeNe lasers operate CW (Continuous Wave) producing a steady beam at a fixed output power unless switched on and off or modulated. (At least they are supposed to when in good operating condition!) However, there are some mode-locked HeNe lasers that output a series of short pulses at a high repetition rate. And, in principle, it is possible to force a HeNe laser with at least one external mirror to "cavity dump" a high power pulse (perhaps 100 times the CW power) a couple of nanoseconds long by diverting the internal beam path with an ultra high speed acousto-optic deflector. But, for the most part, such systems aren't generally useful for very much outside some esoteric research areas and in any case, you probably won't find any of these at a local flea market or swap meet! :)

    Nearly all HeNe lasers output a single wavelength and it is most often red at 632.8 nm. (This color beam actually appears somewhat orange-red especially compared to many laser pointers using diode lasers at wavelengths between 650 and 670 nm). However, green (543.5 nm), yellow (594.1 nm), orange (611.9 nm), and even IR (1,1152 and 3,921 nm) HeNe lasers are available. There are a few high performance HeNe lasers that are tunable and very expensive. And, occasionally one comes across laser tubes that output two or more wavelengths simultaneously but this may actually be a 'defect' resulting from a combination of high gain and insufficiently narrow band optics - these tubes tend to be unstable.

    Manufacturers include Melles-Griot, Spectra-Physics, Uniphase, and several others. (You may also find Aerotech and Siemens HeNe lasers though these companies have gotten out of the HeNe laser business.) HeNe tubes, laser heads, and complete lasers from any of these manufacturers are generally of very high quality and reliability. A more complete list can be found at Photonics Buyers' Guide - Lasers, HeNe and in the chapter: Laser and Parts Sources.

    HeNe lasers have been found in all kinds of equipment including:

    Nowadays, many of these applications are likely to use the much more compact lower (drive) power solid state diode laser. (You can tell if you local ACME supermarket uses a HeNe laser in its checkout scanners by the color of the light - the 632.8 nm wavelength beam from a HeNe laser is noticeably more orange than the 660 or 670 nm deep red from a typical diode laser type.)

    Melles Griot catalogs used to include several pages describing HeNe laser applications. I know this was present in the 1998 catalog but has since disappeared and I don't think it is on their Web site.

    Also see the section: Some Applications of a 1 mW Helium-Neon Laser for the sorts of things you can do with even a small HeNe laser.

    Since a 5 mW laser pointer complete with batteries can conveniently fit on a keychain and generate the same beam power as an AC line operated HeNe laser half a meter long, why bother with a HeNe laser at all? There are several reasons:

    However, the market for new HeNe lasers is still in the 100,000 or more units per year. What can you say... If you need a stable, round, astigmatism-free, long lived, visible 5 to 10 mW beam for under $500 (new, remember!), the HeNe laser is still the only choice.

    Some Applications of a 1 mW Helium-Neon Laser

    There are many uses for even a 1 mW helium-neon laser. Most of these same sorts of things can also be done with a collimated diode laser (though some laser diodes may not have the needed coherence properties for applications like interferometry and hologram generation).

    Below are just a few possibilities.

    (Portions from: Chris Chagaris (pyro@grolen.com).)

    For many more ideas, see the chapters: Laser Experiments and Projects and Laser Instruments and Applications and the many references and links in the chapter: Laser Information Resources.

    HeNe Laser Safety

    As with *any* laser, proper precautions must be taken to avoid any possibility of damage to vision. The types of HeNe lasers mostly dealt with in this document are rated Class II, IIIa, or the low end of IIIb (see the section: Laser Safety Classifications. For most of these, common sense (don't stare into the beam) and fairly basic precautions suffice since the reflected or scattered light will not cause instantaneous injury and is not a fire hazard.

    However, unlike those for laser diodes, HeNe power supplies utilize high voltage (several kV) and some designs may be potentially lethal. This is particularly true of AC line powered units since the power transformer may be capable of much more current than is actually required by the HeNe laser tube - especially if it is home built using the transformer from some other piece of equipment (like an old tube type console TV or that utility pole transformer you found along the curb) which may have a much higher current rating.

    The high quality capacitors in a typical power supply will hold enough charge to wake you up - for quite a while even after the supply has been switched off and unplugged. Depending on design, there may be up to 10 to 15 kV or more (but on very small capacitors) if the power supply was operated without a HeNe tube attached or it did not start for some reason. There will likely be a lower voltage - perhaps 1 to 3 kV - on somewhat larger capacitors. Unless significantly oversized, the amount of stored energy isn't likely to be enough to be lethal but it can still be quite a jolt. The HeNe tube itself also acts as a small HV capacitor so even touching it should it become disconnected from the power supply may give you a tingle. This probably won't really hurt you physically but your ego may be bruised if you then drop the tube and it then shatters on the floor!

    However, should you be dealing with a much larger HeNe laser, its power supply is going to be correspondingly more dangerous as well. For example, a 35 mW HeNe tube typically requires about 8 mA at 5 to 6 kV. That current may not sound like much but the power supply is likely capable of providing much more if you are the destination instead of the laser head (especially if it is a homemade unit using grossly oversized parts)! It doesn't take much more under the wrong conditions to kill.

    After powering off, use a well insulated 1M resistor made from a string of ten 100K, 2 W metal film resistors in a glass or plastic tube to drain the charge - and confirm with a voltmeter before touching anything. (Don't use carbon resistors as I have seen them behave funny around high voltages. And, don't use the old screwdriver trick - shorting the output of the power supply directly to ground - as this may damage it internally.)

    See the document: Safety Guidelines for High Voltage and/or Line Powered Equipment for detailed information before contemplating the inside or HV terminals of a HeNe power supply!

    Now, for some first-hand experience:

    (From: Doug (dulmage@skypoint.com).)

    Well, here's where I embarrass myself, but hopefully save a life...

    I've worked on medium and large frame lasers since about 1980 (Spectra-Physics 168's, 171's, Innova 90's, 100's and 200's - high voltage, high current, no line isolation, multi-kV igniters, etc.). Never in all that time did I ever get hurt other than getting a few retinal burns (that's bad enough, but at least I never fell across a tube or igniter at startup). Anyway, the one laser that almost did kill me was also the smallest that I ever worked on.

    I was doing some testing of AO devices along with some small cylindrical HeNe tubes from Siemens. These little coax tubes had clips for attaching the anode and cathode connections. Well, I was going through a few boxes of these things a day doing various tests. Just slap them on the bench, fire them up, discharge the supplies and then disconnect and try another one. They ran off a 9 VDC power supply.

    At the end of one long day, I called it quits early and just shut the laser supply off and left the tube in place as I was just going to put on a new tube in the morning. That next morning, I came and incorrectly assumed that the power supply would have discharged on it own overnight. So, with each hand I stupidly grab one clip each on the laser to disconnect it. YeeHaaaaaaaaa!!!!. I felt like I had been hid across my temples with a two by four. It felt like I swallowed my tongue and then I kind of blacked out. One of the guys came and helped me up, but I was weak in the knees, and very disoriented.

    I stumbled around for about 15 minutes and then out of nowhere it was just like I got another shock! This cycle of stuff went on for about 3 hours, then stopped once I got to the hospital. I can't even remember what they did to me there. Anyway, how embarrassing to almost get killed by a HeNe laser after all that other high power stuff that I did. I think that's called 'irony'.

    Comments on HeNe Laser Safety Issues

    (Portions from: Robert Savas (jondrew@mail.ao.net).)

    A 10 mw HeNe laser certainly presents an eye hazard.

    According to American National Standard, ANSI Z136.1-1993, table 4 Simplified Method for Selecting Laser Eye Protection for Intrabeam Viewing, protective eyewear with an attenuation factor of 10 (Optical Density 1) is required for a HeNe with a 10 milliwatt output. This assumes an exposure duration of 0.25 to 10 seconds, the time in which they eye would blink or change viewing direction due the the uncomfortable illumination level of the laser. Eyeware with an attenuation factor of 10 is roughly comparable to a good pair of sunglasses (this is NOT intended as a rigorous safety analysis, and I take no responsibility for anyone foolish enough to stare at a laser beam under any circumstances). This calculation also assumes the entire 10 milliwatts are contained in a beam small enough to enter a 7 millimeter aperture (the pupil of the eye). Beyond a few meters the beam has spread out enough so that only a small fraction of the total optical power could possible enter the eye.



  • Back to Helium-Neon Lasers Sub-Table of Contents.

    Theory of Operation, Modes, Coherence Length, On-Line Course and Tutorials

    Instant HeNe Laser Theory

    For much more than I can provide here (should you care), see the section: On-line Introductions to Lasers. These sites are well worth checking out as they include substantial material on HeNe lasers.

    The term laser stands for "Light Amplification by Stimulated Emission of Radiation". However, lasers as most of us know them, are actually sources of light - oscillators rather than amplifiers. (Although laser amplifiers do exist in applications as diverse as fiber optic communications repeaters and multi-gigawatt laser arrays for inertial fusion research.) Of course, all oscillators - electronic, mechanical, or optical - are constructed by adding the proper kind of positive feedback to an amplifier.

    All materials exhibit what is known as a bright line spectra when excited in some way. In the case of gases, this can be an electric current or (RF) radio frequency field. In the case of solids like ruby, a bright pulse of light from a xenon flash lamp can be used. The spectral lines are the result of spontaneous transitions of electrons in the material's atoms from higher to lower energy levels. A similar set of dark lines result in broad band light that is passed through the material due to the absorption of energy at specific wavelengths. Only a discrete set of energy levels and thus a discrete set of transitions are permitted based on quantum mechanical principles (well beyond the scope of this document, thankfully!). The entire science of spectroscopy is based on fact that every material has a unique spectral signature.

    The HeNe laser depends on energy level transitions in the neon gas. In the case of neon, there are dozens if not hundreds of possible wavelength lines of light in this spectrum. Some of the stronger ones are near the 632.8 nm line of the common red HeNe laser - but this is not the strongest:

    The strongest red line is 640.2 nm. There is one almost as strong at 633.4 nm. That's right, 633.4 nm and not 632.8 nm. The 632.8 nm one is quite weak in an ordinary neon spectrum, due to the high energy levels in the neon atom used to produce this line. See: Bright Line Spectra of Helium and Neon. (The relative brightnesses of these don't appear to be accurate though at present.) More detailed spectra can be found at the: Laser Stars - Spectra of Gas Discharges Page. And there is a photo of an actual HeNe laser discharge spectra with very detailed annotation of most of the visible lines in: Skywise's Lasers and Optics Reference Section. The comment about the output wavelength not being one of the stronger lines is valid for most lasers as if it were, that energy level would be depleted by spontaneous emission, which isn't what is wanted!

    There are also many infra-red lines and some in the orange, yellow, and green regions of the spectrum as well.

    The helium does not participate in the lasing (light emitting) process but is used to couple energy from the discharge to the neon through collisions with the neon atoms. This pumps up the neon to a higher energy state resulting in a population inversion meaning that more atoms in the higher energy state than the ground or equilibrium state.

    It turns out that the upper level of the transition that produces the 632.8 nm line has an energy level that almost exactly matches the energy level of helium's lowest excited state. The vibrational coupling between these two states is highly efficient.

    You need the gas mixture to be mostly helium, so that helium atoms can be excited. The excited helium atoms collide with neon atoms, exciting some of them to the state that radiates 632.8 nm. Without helium, the neon atoms would be excited mostly to lower excited states responsible for non-laser lines.

    A neon laser with no helium can be constructed but it is much more difficult without this means of energy coupling. Therefore, a HeNe laser that has lost enough of its helium (e.g., due to diffusion through the seals or glass) will most likely not lase at all since the pumping efficiency will be too low.

    However, pure neon will lase superradiantly in a narrow tube (e.g., 40 cm long x 1 mm ID) in the orange (611.9 nm) and yellow (594.1 nm) with orange being the strongest. Superradiant means that no mirrors are used although the addition of a Fabry-Perot cavity does improve the lateral coherence and output power. This from a paper entitled: "Super-Radiant Yellow and Orange Laser Transitions in Pure Neon" by H. G. Heard and J. Peterson, Proceedings of the IEEE, Oct. 1964, vol. #52, page #1258. The authors used a pulsed high voltage power supply for excitation (they didn't attempt to operate the system in CW mode but speculate that it should be possible).

    (From: Steve Roberts (osteven@akrobiz.com).)

    "Various IR lines will lase in pure neon, and even the 632.8 nm line will lase, but it takes a different pressure and a much longer tube. 632.8 nm also shows up with neon-argon, neon-oxygen, and other mixtures. Just about everything on the periodic table will lase, given the right excitation. See "The CRC Handbook of Lasers" or one of the many compendiums of lasing lines available in larger libraries. These are usually 4 volume sets of books the size of a big phone book just full of every published journal article on lasing action observed. It's a shame that out of these many thousands and thousands of lasing lines, only 7 different types of lasers are under mainstream use.

    There are many possible transitions in neon from the excited state to a lower energy state that can result in laser action. The most important (from our perspective) are listed below:

          (1)         (2)           (3)           (4)          (5)         (6)
         Output       HeNe       Perceived       Lasing      Typical     Maximum
       Wavelength  Laser Name    Beam Color    Transition   Gain (%/m)  Power (mW)
     ------------------------------------------------------------------------------
         543.5 nm    Green         Green        3s2->2p10   0.52   0.59    2 (5)  
         594.1 nm    Yellow    Orange-Yellow    3s2->2p8    0.5    0.67    7 (10)
         604.6 nm                  Orange       3s2->2p7    0.6    1.0     3
         611.9 nm    Orange      Red-Orange     3s2->2p6    1.7    2.0     7
         629.4 nm                Orange-Red     3s2->2p5    1.9    2.0
         632.8 nm     Red          "    "       3s2->2p4   10.0   10.0    75 (200)
         635.2 nm                  "    "       3s2->2p3    1.0    1.25
         640.1 nm                   Red         3s2->2p2    4.3    2.0     2
         730.5 nm             Border Infra-Red  3s2->2p1    1.2    1.25    0.3
         886.5 nm                  "    "       2s2->2p10   1.2    1.25    0.3
    
       1,029.8 nm   Near-IR     Invisible       2s2->2p8    ???
       1,062.3 nm    "   "         "   "        2s2->2p7    ???
       1,079.8 nm    "   "         "   "        2s3->2p7    ???
       1,084.4 nm    "   "         "   "        2s2->2p6    ???
       1,140.9 nm    "   "         "   "        2s2->2p5    ???
       1,152.3 nm    "   "         "   "        2s2->2p4    ???            1.5
       1,161.4 nm    "   "         "   "        2s3->2p5    ???
       1,176.7 nm    "   "         "   "        2s2->2p2    ???
       1,198.5 nm    "   "         "   "        2s3->2p2    ???
       1,395.0 nm    "   "         "   "        2s2->2p?    ???            0.5
       1,523.1 nm    "   "         "   "        2s2->2p1    ???            1.0
       3,391.3 nm    Mid-IR        "   "        3s2->3p4    ???  440.0    24
    

    Notes:

    1. Output Wavelength is approximate. In addition to slight variations due to actual lasing conditions (single mode, multimode, doppler broadening, etc.), some references don't even agree on some of these values to the 4 or 5 significant digits shown.

    2. HeNe Laser Name is what would be likely to be found in a catalog or spec sheet. All those that have an entry in this column are readily available commercially.

    3. Perceived Beam Color is how it would appear when spread out and projected onto a white screen. Of course, depending on the revision level of your eyeballs, this may vary someone from individual to individual. :)

    4. Lasing Transition uses the so-called "Paschen Notation" and indicates the electron shells of the neon atom energy states between which the stimulated emission takes place.

    5. Typical Gain (%/m) shows the percent increase in light intensity due to stimulated emission at this wavelength inside the laser tube's bore. This is the single pass gain and will be affected by tube construction, gas fill ratio and pressure, discharge current, and other factors. The first column is from various sources. The second column is from Hecht, "The Laser Guide Book".

      Gain at 1,523 nm may be similar to that of 543.5 nm - about 0.5%/m. Gain at 3,391 nm is by far the highest of any - possibly more than 100%/m. I know of one particular HeNe laser operating at this wavelength that used an OC with a reflectivity of only 60% with a bore less than 0.4 m long.

    6. Maximum Power shows the highest output power lasers commercially available in a TEM00 beam for each wavelength. The first number is rated power while the number in () is achieved output power for a particularly lively tube. Lasers operating with multiple (spatial) modes (non-TEM00) may have somehwat higher output power.

    See the section: Instant Spectroscope for Viewing Lines in HeNe Discharge for an easy way to see many of the visible ones.

    The most common and least expensive HeNe laser by far is the one called 'red' at 632.8 nm. However, all the others with named 'colors' are readily available with green probably being second in popularity due to its increased visibility near the peak of the of the human eye's response curve (555 nm). And, with some HeNe lasers with insufficiently narrow-band mirrors, you may see 640 nm red as a weak output along with the normal 632.8 nm red because of its relatively high gain. There are even tunable HeNe lasers capable of outputting any one of up to 5 or more wavelengths by turning a knob. While we normally don't think of a HeNe laser as producing an infra-red (and invisible) beam, the IR spectral lines are quite strong - in some cases more so than the visible lines - and HeNe lasers at all of these wavelengths (and others) are commercially available.

    The first gas laser developed in the early 1960s was an HeNe laser operated at 1,152.3 nm. In fact, the IR line at 3,391.3 is so strong that a HeNe laser operating in 'superradiant' mode - without mirrors - can be built for this wavelength and commercial 3,391.3 nm HeNe lasers may use an output mirror with a reflectivity of less than 50 percent. Contrast this to the most common 632.8 nm (red) HeNe laser which requires very high reflectivity mirrors (often over 99 percent) and extreme care to mimize losses or it won't function at all.

    When the HeNe gas mixture is excited, all possible transitions occur at a steady rate due to spontaneous emission. However, most of the photons are emitted with a random direction and phase, and only light at one of these wavelengths is usually desired in the laser beam. At this point, we have basically the glow of a neon sign with some helium mixed in!

    To turn spontaneous emission into the stimulated emission of a laser, a way of selectively amplifying one of these wavelengths is needed and providing feedback so that a sustained oscillation can be maintained. This may be accomplished by locating the discharge between a pair of mirrors forming what is known as a Fabry-Perot resonator or cavity. One mirror is totally reflective and the other is partially reflective to allow the beam to escape.

    The mirrors may be perfectly flat (planar) or one or both may be spherical with a typical radius (r = 2 * focal length) equal to the length of the cavity (L). The latter is a configuration called 'confocal'. Curved mirrors result in an easier to align more stable configuration but are more expensive than planar mirrors to manufacture and are not as efficient since less of the lasing medium volume is used (think of the shape of the beam inside the bore). The confocal arrangement represents a good compromise between a true spherical cavity (r = 1/2 * L) which is easiest to align but least efficient and one with plane parallel mirrors (f = infinity) which is most difficult to align but uses the maximum volume of the lasing medium. Based on my experience with commercial HeNe tubes, short ones (less than 8 inches in total length) seem to use planar mirrors while longer ones will tend to have at least one curved mirror. This makes sense since with a short bore, every fraction of a percent of gain is needed (implying the desire to use the maximum volume of the lasing medium) and aligning short resonators is going to be easier anyhow. See the section: Common Laser Resonator Configurations.

    These mirrors are normally made to have peak reflectivity at the desired laser wavelength. When a spontaneously emitted photon resulting from the transition corresponding to this peak happens to be emitted in a direction nearly parallel to the long axis of the tube, it stimulates additional transitions in excited atoms. These atoms then emit photons at the same wavelength and with the same direction and phase. The photons bounce back and forth in the resonant cavity stimulating additional photon emission. Each pass through the discharge results in amplification - gain - of the light. If the gain due to stimulated emission exceeds the losses due to imperfect mirrors and other factors, the intensity builds up and a coherent beam of laser light emerges via the partially reflecting mirror at one end. With the proper discharge power, the excitation and emission exactly balance and a maximum strength continuous stable output beam is produced.

    Spontaneously emitted photons that are not parallel to the axis of the tube will miss the mirrors entirely or will result in stimulated photons that are reflected only a couple of times before they are lost out the sides of the tube. Those that occur at the wrong wavelength will be reflected poorly if at all by the mirrors and any light at these wavelengths will die out as well.

    Summary of the HeNe Lasing Process

    The HeNe laser is a 4 level laser (see the table above for the specific energy level transitions for the common wavelengths):

    For most common IR wavelengths, level 4 is the 2s state and level 3 are various 2p states. However, the very strong 3.93 um line originates from the 3s state just like the visible wavelengths - and is the reason it competes with them in long HeNe tubes and must be suppressed to optimize visible output.

    The 's' states of neon have about 10 times the lifetime of the 'p' states and thus support the population inversion since a neon atom can hang around in the 2s state long enough for stimulated emission to take place. However, the limiting effect is the decay back to level 1, the ground state, since the 1s state also has a long lifetime. Thus, one wants a narrow bore to facilitate collisions with its walls. But this results in increased losses. Modern HeNe lasers operate at a compromise among several contradictory requirements which is one reason that their maximum output power is relatively low.

    Longitudinal Modes of Operation

    The physical dimensions of the Fabry-Perot resonator impose some additional constraints on the resulting beam characteristics.

    While it is commonly believed that the 632.8 nm (for example) transition is a sharp peak, it is actually a Gaussian - bell shaped - curve. (Strictly speaking, it is something called a "Voigt distribution" which is a conbination of Gaussian and Lorentzian - but that's for the advanced course. Gaussian is close enough for this discussion since the discrepency only shows up way out in the tails of the curve.) In order for the cavity to resonate strongly, a standing wave pattern must exist. This will only occur when an integral number of half wavelengths fit between the two mirrors. This restricts possible axial or longitudinal modes of oscillation to:

                       L * 2                 c * n 
                 W = ---------    or   F = --------- 
                         n                   L * 2
    
    Where:

    The laser will not operate with just any wavelength - it must satisfy this equation. Therefore, the output will not usually be a single peak at 632.8 nm but a series of peaks around 632.8 nm spaced c/(L * 2) Hz apart. Longer cavities result in closer mode spacing and a larger number of modes since the gain won't fall off as rapidly as the modes move away from the peak. For example, a cavity length of 150 mm results in a longitudinal mode spacing of about 1 GHz; L = 300 mm results in about 500 MHz. The strongest spectral lines in the output will be nearest the combined peak of the lasing medium and mirror reflectivity but many others will still be present. This is called multimode operation.

    Think of the vibrating string of a violin or piano. Being fixed at both ends, it can only sustain oscillations where an integer number of cycles fits on the string. In the case of a string, n can equal 1 (fundamental) and 2, 3, 4, 5 (harmonics or overtones). Due to the tension and stiffness of the string, only small integer values for n are present with a significant amplitude. For a HeNe laser, the distribution of the selected neon spectral line and shape of the reflectivity function of the mirrors with respect to wavelength determine which values of n are present and the effective gain of each one.

    For a typical HeNe laser tube, possible values of n will form a series of very large numbers like 948,123, 948,124, 948,125, 948,126,.... rather than 1, 2, 3, 4. :-) A typical gain function showing the emission curve of the excited neon multiplied by the mode structure of the Fabrey-Perot resonator and the reflectivity curve of the mirrors may look something like the following:

                    |                  632.8 nm
                   I|                     .
                    |                  |  |  |
                    |               |  |  |  |  | 
                    |            |  |  |  |  |  |  |  
             _______|______.__|__|__|__|__|__|__|__|__|__._______
               n=948,125  -5 -4 -3 -2 -1 +0 +1 +2 +3 +4 +5
    

    Since the mode locations are determined by the physical spacing of the mirrors, as the tube warms up and expands, these spectral line frequencies are going to drift downward (toward longer wavelengths). However, since the reflectivity of the mirrors as a function of wavelength is quite broad (for all practical purposes, a constant), new lines will fill in from above and the overall shape of the function doesn't change.

    However, for very short HeNe tubes, the gain curve may be narrower than the spacing between modes. The effect is even more likely with short low pressure carbon dioxide (CO2) lasers because for a given resonator length, the ratio of wavelengths (10,600 nm for CO2 compared to 632.8 nm for HeNe means that the longitudinal mode spacing is 16.7 times larger). In these cases, the laser output will actually turn on and off as it heats up and the distance between the mirrors increases due to thermal expansion.

    Now for some actual numbers: The Doppler broadened gain curve for the neon in a HeNe laser has a half-width (the gain is at least half the peak value) on the order of 1,500 MHz. So, for a 500 mm long (high gain) tube with its mode spacing of about 300 MHz (similar to what is depicted above), 5 or 6 lines may be active simultaneously and oscillation will always be sustained (though there would be some variation in output power as various modes sweep by and compete for attention). However, for a little 10 cm tube, the mode spacing is about 1,500 MHz. If this laser were to be really unlucky (i.e., the distance between mirrors was exactly wrong) the cavity resonance might not fall in a portion of the gain curve with enough gain to even lase at all! Or, as the tube heats up and expands, the laser would go on and off. There are very few commercial HeNe laser tubes that short. It is possible to widen the gain curve somewhat by using a mixture of neon isotopes (Ne20 and Ne22) rather than a single one since the location of their peak gain differ slightly. This would allow a smaller cavity to lase reliably and/or reduce amplitude variations from mode sweeping in all size HeNe lasers.

    A high speed photodiode and oscilloscope or spectrum analyzer can be used to view the frequencies associated with the longitudinal modes of a HeNe laser. The clearest demonstration would be using a short tube where exactly two longitudinal modes are active. This will result in a single difference frequency. A polarized tube is best as it forces both modes to have the same polarization (a photodiode will not detect the difference frequencies for orthogonally polarized modes). But, adding a polarizer can partially compensate for this with a slight loss in signal strength. Without a polarizer, the beat frequencies of a random polarized laser will tend to be at twice the mode spacing.

    Passive stabilization (using a structure made of a combination of materials with a very low or net zero coefficient of thermal expansion or a temperature regulator) or active stabilization (using optical feedback and piezo or magnetic actuators to move the mirrors, or a heating element to control the length of the entire structure) can compensate for these effects. An internal etalon will also likely be part of such a system to select a single mode (frequency). However, the added expense is only justified for high performance lab quality lasers or industrial applications like interferometric based precision measurement systems - you won't find these enhancements on the common cheap HeNe tubes found in barcode scanners (which are long enough to not be affected in any case unless possibly if they are old and barely alive)! See the section: Stabilized Single Frequency HeNe Lasers.

    Thus, a typical HeNe laser is not monochromatic though the effective spectral line width is very narrow compared to common light sources. Additional effort is needed to produce a truly monochromatic source operating in a single longitudinal mode. One way to do this is to introduce another adjustable resonator called an etalon into the beam path inside the cavity. A typical etalon consists of a clear optical plate with parallel surfaces. Partial reflections from its two surfaces make it act as a weak Fabry-Perot resonator with a set of modes of its own. Then, only modes which are the same in both resonators will produce enough gain to sustain laser output.

    The longitudinal mode structure of an optional intra-cavity etalon might look like the following (not to scale):

                    |                  632.8 nm
                   I|      .              .              .
                    |      |              |              |
                    |      |              |              |
                    |      |              |              |
             _______|______|______________|______________|_______
               m=13,542   -1             +0             +1
    

    Notice that since the distance between the two surfaces of the etalon is much less than the distance between the main mirrors, the peaks are much further apart (even more so than shown). (The etalon's index of refraction also gets involved here but that is just a detail.) By adjusting the angle of the etalon, its peaks will shift left or right (since the effective distance between its two surfaces changes) so that one spectral line can be selected to be coincident with a peak in the main gain function. This will result in single mode operation. The side peaks of the etalon (-1, +1 and beyond) will only coincide with weak peaks in the main gain function shown above so that their combined amplitude (product) is insufficient to contribute to laser output.

    (From: Prof Harvey Rutt (h.rutt@ecs.soton.ac.uk).)

    The standard, small HeNe laser normally lases on only one transition, the well known red line at about 632.8 nm.

    The HeNe gain curve is inhomogeneously Doppler broadened with a gain bandwidth of around 1.5 GHz (at 632.8 nm). (The width of the Doppler broadened gain curve depends on the lasing wavelength. At 3,391 nm, it is only about 310 MHz.) For a typical laser, say 30 cm long, the axial modes are separated by about 500 MHz. Typically, two or three axial modes are above threshold, in fact as the laser length drifts you typically get two modes (placed symmetrically about line centre) or three modes (one near centre, one either side) cyclically, and a slow periodic power drift results. Shorter lasers, less modes, more power variation unless stabilized. But it needs a huge HeNe laser to get ten modes, and since they are closer of course they still only spread over the 1.5 GHz line width.

    Most HeNe lasers which do not contain a Brewster window or internal Brewster plate are randomly polarized; adjacent modes tend to be of alternating orthogonal polarizations. (Note that this is not always the case and can be overridden with a transverse magnetic field, see below. See the section: . --- Sam.)

    Some frequency stabilized HeNe lasers are NOT single mode, but have two, and the stabilization acts to keep them symmetrical about line centre - i.e., both are half a mode spacing off line centre. A polariser will then split off one of them or a polarizing beamsplitter will separate the two.

    (From: Sam.)

    The party line is that adjacent modes in a HeNe laser will be of orthogonal polarization. However, I've seen samples of small (e.g., 5 or 6 inch) random polarized tubes only supporting 2 active modes where this is not the case - they output a polarized beam that remains stable with warmup and in any case, applying a strong transverse magnetic field will override the natural polarization. So, it's not a strong effect. Only if everything inside the tube is reasonably symmetric, will the modes alternate. Modes may also remain one polarization as they move through part of the gain curve and then abruptly - and repeatably - flip polarization. But the majority of tubes are well behaved in this regard.

    For a tutorial on both longitudinal (axial) and spatial (transverse) modes, see An Investigation of the Cavity Modes of the HeNe Laser.

    More on Resonator Length and Mode Hopping

    Here are some additional comments that address the common fear of the novice laser enthusiast that the resonator length has to be stabilized to the nm or else the laser will blink off.

    (Portions from: Steve Roberts (osteven@akrobiz.com).)

    Flames expected, as I'm ignoring some of the physics and am trying to explain some of this based on what I observe, aligning and adjusting cavities on HeNe and argon ion lasers as part of repairing them. Anyone who only goes by the textbooks has missed out on the fun, obviously having never had to work on an external mirror resonator. It can be quite a education!

    Due to the complex number of possible paths down the typical gain medium, you will see lasing as long as the mirrors are reasonably aligned. The cavity spacing is not always that critical and will change anyway as the mirror mounts are adjusted (there will always be some unavoidable translation even if only the angle is supposed to be changed). No, lasers don't really flash on and off in interferometric nulls as you translate the mirrors - they instead change lasing modes. They will find another workable path. You will in some cases see this as a change in intensity but it is more properly observed on a optical spectrum analyzer as a change in mode beating. Eventually you can translate them far apart enough that lasing ceases, but this is a function of your optics not the resonator expansion.

    I have seen what you fear in some cases by adding a third mirror to a two mirror cavity with a low gain medium such as HeNe where the third mirror can be positioned in such a way to kill many possible modes. This usually occurs when I use a HeNe laser to align an argon laser's mirrors and the HeNe laser will flicker from back reflections. See the section: External Mirror Laser Cleaning and Alignment Techniques. But unless you have a extremely unstable resonator design, translation will just cause mode hopping, this becomes important on a frequency stabilized or mode locked laser if you have a precision lab application. Otherwise, most commercial lasers are not length stabilized in the least. There are equations and techniques for determining if you have a stable optical design - stable in this case meaning it will support lasing over a broad range of transverse and longitudinal modes. For examples see any text by A. E. Siegmund or Koechner. If your library doesn't have any similar texts, find a book on microwave waveguides. It might aid you in visualizing what is going on.

    Either an intracavity etalon or active stabilization systems are usually used on single frequency systems anyways, by either translating the mirror on piezos or by pulling on mirror supports with small electromagnets, or in the case of smaller units, heaters to change the cavity length on internal mirror tubes. An etalon is basically a precision flat glass plate in the lasing path between the mirrors, its length is changed by a oven and it acts as a mode filter.

    Length stabilization to the 50 or 100 nm you might have expected to be needed would be gross overkill anyhow, and would be impossible to achieve in practice by stablizing the resonator alone. Depending on the end use of the product, most lasers are simply built with a low expansion resonator of graphite composite or Invar, although in many products a simple aluminum block or L shape is used, a few rare cases use rods made of two different materials designed to compensate by one short high expansion rod moving the mirror mount in opposition to the main expansion. A small fraction of a millimeter is a more reasonable specification.

    (From: Prof Harvey Rutt (h.rutt@ecs.soton.ac.uk).)

    The basic idea, that the laser can only work at the frequencies where an integral number of half waves fit in the cavity, is perfectly correct. The separation between adjacent modes is just 1/(2*L) where L is the cavity length in cm. From this we get the separation in 'wavenumbers'. One wavenumber is 30 GHz, so in more usual units it is just 30 GHz/(2*L). Or, to make it easy, in a 50 cm long laser the modes are 300 MHz apart. That is not very far optically.

    The laser operates by some molecule, gas, ion in a crystal, etc. making a transition between two levels. But those levels are not perfectly 'sharp'; we say they are 'broadened'. The reason can be many things:

    In any case no transition is *perfectly* sharp, the fact that it has a finite lifetime gives it a certain width, but this is not often the real limit, something else is usually more important.

    These broadening mechanisms 'blur out' the line - we see optical gain over that *range* of frequencies, the gain bandwidth.

    An example is carbon dioxide. The 'natural width' is very small, of order Hz. The Doppler width at 300 °K is about 70 MHz. The collision broadened width increases about 7 MHz/Torr; so well below 10 Torr the width is Doppler limited, ~70 MHz; above 10 Torr pressure broadened (e.g. ~700 MHz at 100 Torr).

    If I take a typical HeNe laser it might 'blur' out over a GHz or so - **more** than that 300 MHz mode spacing - so there are *always* two or thee modes within the 'gain bandwidth' and it will always lase. For a glass laser there might be *thousands* of modes, because the glass gain is very wide indeed.

    But there *are* cases that go the other way. For carbon dioxide, at low pressure, the line is Doppler broadened and about 70 MHz wide, much **LESS** than that 300 MHz mode spacing. So short carbon dioxide lasers really do turn on and off as the cavity length changes, and you have to 'tune' the cavity length to get a mode inside the gain width. This mainly happens with short, gas lasers in the infrared.

    For a *high pressure* CO2 laser at 760 Torr (1 atm), the line width is several GHz, much more than the mode spacing, so the effect disappears.

    Observing Longitudinal Modes of a HeNe Laser

    Monitoring the output power of any HeNe laser while it's warming up will show a variation in output power due to longitudinal mode cycling. There is even a specification called the "Mode Sweep Percentage" which indicates how large the variation is in relation to the output power. For short tubes, the power fluctuations can approach 20 percent; for long tubes, they may be less than 2 percent.

    There are many ways to actually "see" the modes of a laser including the use of an instrument called a Scanning Fabry-Perot Interferometer (see the section: Scanning Fabry-Perot Interferometers). However, for a short tube with only 1 or 2 modes, it's quite straightforward to interpret what's going on from the output power and polarization alone. All that's need is a photodiode and multimeter (or continuous reading laser power meter), and polarizing filter. (A lens from a pair of polarized Sun glasses or a photographic polarizing filter will do.) The power monitor can be set up in the output beam and the polarizing filter in the waste beam from the HR mirror. Alternatively, a non-polarizing beamsplitter can be used to provide the two beams. Adding a polarizing beamsplitter oriented so that it separates the two polarization orientations in one of the beams can simplify the interpretation of the polarization changes.

    Changing the orientation of the polarizer will affect the amplitude of the intensity variations. For most HeNe lasers, the longitudinal modes will generally remain at two fixed orthogonal orientations, with adjacent modes usually being orthogonal to each other. As the tube heats and the cavity length increases, the modes march along under the gain curve with those at one end disappearing and new ones appearing at the other end as described above. But for well behaved tubes, they don't flip polarization. When the polarizer is oriented at 45 degrees to the polarization axes of the tube, the reading will remain constant. When aligned with the polarization axes of the tube, the reading will fluctuate the most.

    As a specific example, consider an HeNe laser tube with a mirror spacing of 120 mm (about 4.75 inches, one of the shortest commercially available laser tubes). This corresponds to a mode spacing of about 1.25 GHz - rather close to the FWHM of 1.5 to 1.6 GHz for the neon gain bandwidth. With this tube, at most 2 modes will be oscillating at any given time. When the output power and polarization is monitored while the tube is warming up, a very distinctive behavior will be observed. One might think that it should be a periodic variation in output power with a simple sinusoidal or similar characteristic. However, there will actually be two peaks for each cycle: A large one corresponding to when there is a single lasing mode at the center of the gain curve, and a smaller one when there are two modes symmetric around the center of the gain curve. For most tubes, the polarization of adjacent modes is orthogonal and will remain fixed with the mode. So, as the modes cycle under the gain curve successive large peaks will have opposite polarization. The small peaks will have equal components of both polarizations. Even though two modes are oscillating, the gain for each one is so much closer to the lasing threshold that their combined power is still lower than for the single mode at the peak of the gain curve. There may also be rather sudden changes in output power as modes on the tails of the gain curve come and go. However, for some tubes which are affectionately called "flippers", the polarization of the modes will tend to suddenly change orientation as they move through the gain curve. This should also be apparent when viewing the beam through a polarizing filter.

    For more on these types of experiments along with typical plots, see the section: HeNe Laser Output Power Fluctuation During Warmup.

    Longitudinal Mode Pulling

    It turns out that most lasers don't actually oscillate on exact multiples of the cavity resonance frequency, c/2L, as stated in introductory textbooks. (The exceptions would be where the gain curve is essentially flat but that's another story.) Longitudinal modes that aren't exactly centered on the gain curve will be at frequencies very slightly offset from these, pulled toward the center of the gain curve with those that are farthest away seeing the most shift. This is a well known effect called "mode pulling" with highly developed theory to back it up. (Mode pulling isn't unique to lasers. For example, a quartz crystal oscillator can be tuned over a small range using an external capacitor even though its resonance frequency differs from the output frequency.)

    When the laser beam hits a high speed photodetector like a photodiode, which is a non-linear (square law) device, in addition to the DC power term, there are the primary difference frequencies which are close to multiples of c/2L (but not exactly due to mode pulling), but also the differences of the difference frequencies - the second order intermodulation products - which will be at (relatively) low frequencies compared to c/2L. As the cavity length changes and the lasing modes drift across the gain curve, the mode pulling effect on each one varies slightly. But, small differences between large numbers can result in dramatic changes in these second order terms, rapidly rising and falling in frequency, and coming and going as modes drop off one end of the gain curve and appear at the other. The amplitude of the second order beat will be much lower than that of the primary beat but is still detectable with a spectrum analyzer, or in some cases with an audio amplifier.

    For a HeNe laser, the range of second order frequencies is typically in the 1 to 100 kHz range while for a solid state laser it will be in the MHz to 10s or 100s of MHz range. Note that there will generally not be any beat in the range from 0 Hz and some minimum frequency (e.g., 1 kHz or so in the case of the HeNe laser) as would be expected where the modes are almost symmetric on either side of the gain curve so there would be very low second order frequencies. Apparently, a self mode-locking effect occurs to force these to be exactly zero frequency over a small range of mode positions.

    For the effect to be present, the laser has to be able to oscillate on at least 3 longitudinal modes simultaneously. (With only 2 modes, there will be only a single difference frequency.) The doppler broadened gain curve of neon for the HeNe laser is about 1.5 GHz Full Width Half Maximum (FWHM) at 632.8 nm. To get 3 modes requires the modes to be less than about 500 MHz apart implying a c/2L tube length of about 30 cm or more - typical of a 5 mW or more (rated) HeNe laser. It should be polarized to force all modes to be of the same polarization - orthogonal polarizations do not mix in a photodetector. For a randomly polarized laser which typically produces alternating polarizations for adjacent modes, a longer tube length would be required to guarantee enough same-polarized modes and/or a polarizer at 45 degrees to the beam polarizations could be added (but this would cut the power to the photodiode by 50 percent or more).

    This effect can be demonstrated using a medium length HeNe laser, high speed photodiode, and audio amplifier. Initially when the laser is turned on and is heating up and expanding the fastest, they may sound like clicks or pops or just non-random noise. As the expansion slows down, more distinct chirps and other interesting sounds will appear. The complexity of the symphony will also depend on the tube length and thus how many modes are oscillating.

    (From: Roithner Lasertechnik (office@roithner-laser.com).)

    You can "listen" to a single mode HeNe tube: Take an X-rated photodiode and an AC power amplifier - guide a small part of the HeNe laser beam to the photodiode (don't let it saturate!) - and listen to the "chirping oscillations" during warming up with a speaker. Hint: There are no birds inside the tube. ;-) But it sounds similar! Looks like sin(x)/x.

    Transverse Modes of Operation

    Lasers can also operate in various transverse modes. Laser specifications will usually refer to the TEM00 mode. This means "Transverse Electromagnetic Mode 0,0" and results in a single beam. The long narrow bore of a typical HeNe laser forces this mode of oscillation. With a wide bore multiple sub-beams can emerge from the same cavity in two dimensions. The TEM mode numbers (TEMxy) denote the number (minus one) or configuration of the sub-beams.

    Here is a rough idea of what transverse modes might look like for a rectangular cavity:

    
                            O        OO        OOO      Each 'O' represents
         O        OO        O        OO        OOO       a single sub-beam.
    
       TEM00     TEM10    TEM01    TEM11      TEM21
    
    

    I have only shown the rectangular case because that's the only one I could draw in ASCII!

    Other (non-cartesian) patterns of modes will be produced depending on bore configuration, dimensions, and operating conditions. These may have TEMxy coordinates in cylindrical space (radial/angular), or a mixture of rectangular and cylindrical modes, or something else!

    To achieve high power from a HeNe laser, the tube may be designed with a wider but shorter bore which results in transverse multimode output. Since these tubes can be smaller for a given output power, they may also be somewhat less expensive than a similar power TEM00 type. As a source of bright light - for laser shows, for example - such a laser may be acceptable. However, the lower beam quality makes them unsuitable for holography or most serious optical experimentation or research. An example of a high power multimode HeNe laser head is the Melles Griot 05-LHR-831 which has a rated output power of 25 mW. Compared to their 05-LHR-827 which is a 25 mW TEM00 laser head, the multimode laser is about 2/3rds of the length and runs on about 3/5ths of the operating voltage at lower current.

    (Note that it is easy in principle to convert the output of a TEM00 laser into multimode by using a length of fiber-optic cable with lenses at each end to focus the beam into it and collimate the beam coming out. If the core diameter of the fiber is greater than that needed for the fiber itself to be single mode, then the result will be that multiple modes will propagate inside and the output will be multimode. To assure single mode propagation at 632.8 nm with the index of refraction of a typical glass fiber, a 4 um or smaller core is needed. The actual core diameter of the fiber will determine how many modes are actually generated. A core diameter of 10 um will result in a few modes while one of 125 um will produce dozens of modes. Why this would be desired is another matter.)

    Sometimes, laser companies don't quite get it right either and a laser tube that is supposed to be TEM00 may actually be multi-transverse mode all the time or whenever it feels like it (e.g., after warmup). I have a 13.5 mW Aerotech tube that is supposed to be TEM00 but produces a beam that has an outer torus (doughnut shape) with a bright spot in the middle. I've also seen an apparently factory-new Uniphase green HeNe laser that produces a similar doughnut beam. Both of these are probably the result of one or both mirrors having a radius of curvature that is too short for the bore diameter. They may have been manufacturing goofups. Everyone can have a bad day, even if it results in a bunch of dud lasers. :)

    Note that the mode structure implies nothing about the polarization of the beam. Single mode (TEM00) and multimode lasers can be either linearly polarized or randomly polarized depending on the design and for the multimode case, each sub-mode can have its own polarization characteristics. HeNe (and other) lasers will be linearly polarized if there is a Brewster window or Brewster plate inside the cavity. The majority of HeNe laser tubes produce a TEM00 beam which has random polarization. For internal mirror tubes, linear polarization may be an extra cost option. External mirror HeNe lasers also generally produce a TEM00 beam but are linearly polarized since the ends of the tube are terminated with Brewster windows.

    A photodiode and oscilloscope or spectrum analyzer can be used to view the frequencies associated with transverse modes. The transverse difference frequencies are very low compared to the longitudinal mode spacing so a really high speed photodiode isn't needed. A response of a few MHz should be sufficient. Typically less than 2 mm square silicon photodiode will have an adequate frequency response. But the modes do have to overlap on the detector so it may be necessary to spread the beam of a multimode HeNe laser using a lens. A polarized tube is best as it forces the modes to have the same polarization (a photodiode will not detect the difference frequencies for orthogonally polarized modes). But, adding a polarizer can partially compensate for this, though the polarization may drift with a randomly polarized laser.

    For a tutorial on both longitudinal (axial) and spatial (transverse) modes, see An Investigation of the Cavity Modes of the HeNe Laser.

    Multi-Transverse Mode HeNe Lasers

    As noted, most HeNe lasers are designed to operate with a single transverse (spatial) mode or TEM00. However, to obtain the highest power for a given tube size or by a goof-up in design, a higher order mode structure may be produced. A non-TEM00 mode may be present if:

    All of these are really somewhat equivalent and simply mean that more than one mode fits inside the available active mode volume.

    Note that a speck of dirt or dust on the inside of a mirror or window (if present), or damage to an optical surface, can result in a multi-transverse mode beam even if the bore and mirror parameters are correct for TEM00 operation. Unfortunately, convincing a bit of dust to move out of the way isn't always easy on the inside of an internal mirror HeNe laser tube! Yes, though not common, it can happen. This is one reason not to store tubes vertically. I've heard of people successfully using a Tesla (Oudin) coil to charge up the errant dust particle, causing it to just out of the way via electrostatic repulsion. Your mileage may vary. :)

    Coherence Length of HeNe Lasers

    Common HeNe lasers have a coherence length of around 10 to 30 cm. By adding an etalon inside the cavity to suppress all but one longitudinal mode, coherences lengths of 100s of meters are possible. Naturally, such HeNe lasers are much more expensive and are more likely to be found in optics research labs - not mass produced applications.

    The following actually applies to all lasers using Fabry-Perot cavities operating with multiple longitudinal modes. It was in response to the question: "Why does the coherence length of a HeNe laser tend to be about the same as the tube length?"

    (From: Mattias Pierrou).

    In a HeNe laser you typically have only a few (but more than one) longitudinal modes. These cavity modes must fulfill the standing-wave criterion which states that must be an integer number of half wavelengths between the mirrors. In the frequency domain this means that the 'distance' between two modes is delta nu = c/(2L), where L is the length of the laser.

    The beat frequency between the modes gives rise to a periodic variation in the temporal coherence with period 2L/c, i.e. full coherence is obtained between two beams with a path-difference of an n*2L (n integer).

    If you have only one frequency, the coherence length is infinite (that is, if you neglect the spectral width of this mode which otherwise limit the coherence length). If you have two modes, the coherence varies harmonically (like a sinus curve).

    The more modes you have in the laser, the shorter is the regions (path-length differences) of good coherence, but the period is still the same.

    You can try this by setting up a Michelson interferometer and start with equal arm-lengths which of course gives good coherence. Then increase the length of one arm until the visibility of the fringes disappear. This should occur for a path-difference slightly less than 2L (remember that the path-difference is twice the arm-length difference!). If there are only two modes is the laser the zero visibility of fringes should occur at exactly 2L. Now continue to increase the path-difference until you reach 4L (arm-length difference of 2L). You should again see the fringes clearly due to the restored coherence between the beams.

    What is Mode Locking?

    The normal output of a HeNe or other CW laser is a more or less constant intensity beam. Although there may be long term variations in output power as well as short term optical noise and ripple from the power supply, these are small compated to the average intentsity. Mode locking is a technique which converts this CW beam to a periodic series of very short pulses with a length anywhere from picoseconds to a fraction of a nanosecond. The separation of the pulses is equal to the time required for light to make one round trip around the laser cavity and the pulse repetition rate (PRF) will then be: c/(2*l). For example, a laser resonator with a distance of 30 cm (1 foot) between mirrors, would have a mode locked PRF of about 500 MHz.

    Mode locking is implemented by mounting one of the mirrors of the laser cavity on a piezo-electric or magnetic driver controlled by a feedback loop which phase locks it with respect to the optically sensed output beam.

    Without mode locking, all the modes oscillate independently of one another with random phases. However, with the mode locked laser, all the cavity modes are forced to be in phase at one point within the cavity. The constructive interference at this point produces a short duration, high power pulse. Destructive interference produces a power of almost zero at all other points within the cavity. The mode locked pulse then bounces between the two laser mirrors, and a portion passes through the output coupler on each pass.

    As a practical matter, you probably won't run into a mode locked HeNe laser at a garage sale!

    HeNe Laser Output Power Fluctuation During Warmup

    While not generally visible by eye alone except possibly for very short or tired (low gain) HeNe lasers, there is a quasi-periodic variation of output power with time. For the typical HeNe laser tube shortly after turn-on, the frequency is quite rapid (a cycle every few seconds) and gradually slows down as the tube temperature reaches a steady state value (after a half hour or more).

    Note that while the frequency of the power variations in output power of a HeNe laser goes to beyond the GHz range, the following deals with what can be seen by human eyeballs with the aid of only a photodiode and multimeter or chart recorder (or a PC with a data aquisition module).

    Thanks to Ryan Haanappel, here is a plot of the measured output power of a typical HeNe laser tube from power-on to 20 minutes: Typical HeNe Laser Output Power Versus Time During Warmup. More plots and photos can be found on Ryan's HeNe Lasers Experience Page, and later in this section.

    Examining the actual plot of output power versus time such as shown in HeNe Laser Output Power Fluctuation During Warmup (or careful observation of laser power meter readings) of a HeNe laser reveals that the curve is not simple but may include several types of behavior:

    Goofups in design and manufacturering can result in various combinations of these and other effects, though for the most part, HeNe laser companies generally know what they are doing! :) But see the plots below for both normal and abnormal behavior, and a link near the end of the section for a case study of one dramatic example of and "oops". :)

    Plots of HeNe Laser Power Output and Polarized Modes During Warmup

    Here are some plots I made of power output versus time for several typical HeNe laser tubes and heads from nearly the shortest available to mid-size. (Beyond this, the appearance will be very similar, but possibly with even a smaller fluctuation in power due to mode cycling.) Most are from Melles Griot but the behavior of lasers from other manufacturers will be very similar. The majority are healthy samples but a few show some rather dramatic peculiarities. There are also plots of a Coherent model 200 and Hewlett Packard model 5517A frequency stabilized HeNe lasers from power-on to locking.

    For most of the plots, my "instrumentation" consisted of a pair of $2 photodiode feeding two of the analog inputs of a DATAQ Chart Recorder Starter Kit attached to my ancient 486DX-75 Kiwi laptop running Win95. The photodiodes are reverse biased by 30 VDC from a +/-15 VDC power supply with a variable load resistor to set the calibration. The output is taken between the junction of the resistor and the photodiode, and power supply common (0 VDC). One channel is shown below:

    
                   R1     PD1
     +15 VDC o----/\/\----|<|----+
                  100            |
                                 /
                                 \<----------+----+---o A/D Input (+/-10 V range)
                                 / R2        |    |
                                 \ 25K       |    /
                    R3           |       C1 _|_   \ 200K ohms (Zin of A/D module)
     -15 VDC o-----/\/\----------+      1uF ---   / 
                   68K                       |    \
                                             |    |
       0 VDC o-------------------------------+----+----o A/D Ground
    
    

    The values shown were selected for lasers with a maximum power output of around 1 mW. For higher power lasers, R2+R3 can be decreased or an attenuation filter can be placed in the beam. The later is preferred to avoid shifting the 0 mW reference level, and is what I did for most of the plots.

    The capacitor across the input is intended to minimize noise pickup. The resulting filter rolls off at around 0.1 Hz. For reasonably well behaved HeNe lasers, even during the initial warmup period, this bandwidth is more than adequate. The sampling rate for all the plots is at least 10 Hz to allow for averaging since the A/D seems to have an uncertainty of about 2 LSBs.

    For monitoring power from the waste beam (which is much lower), a dedicated beam sampler assembly was constructed which along with a photodiode preamp, enabled power levels as low as a few uW to fully utilize the 20 V p-p range of the A/D.

    Although some of these plots aren't as nicely annotated as the one above, zero power is near the bottom of the plot so relative power variations can still be easily seen (who cares about absolute power anyhow!) and the time/division is indicated. The plots are arranged by increasing laser tube length.

    For the following, "Total" means all the power in the beam; "Polarized" means a polarizing filter has been inserted in the beam and aligned to produce the largest difference between minimum and maximum output as the modes cycle. (Only done for random polarized lasers.) The scale factor for the "polarized" plot has been adjusted so that the peak amplitude is approximately the same as for the "total" plot ease of viewing. However, it should be understood, that the sum of the power in the two orthogonal polarizations must add up to the total power. All are red (632.8 nm) HeNe lasers unless otherwise noted.

    Intensity Stability of HeNe Lasers

    There are at least three kinds of intensity variations present with HeNe (or other gas) lasers: long term as various longitudinal modes compete for attention, short term due power supply ripple or discharge instability, and beat frequencies between modes that are active.

    Common internal mirror HeNe laser tubes include a specification called "Mode Cycling Percent" or something similar. This relates to the amount of intensity variation resulting from changes in longitudinal modes due to thermal expansion. Typical values range from 20 percent for a small (e.g., 6 inch, 1 mW) tube to 2 percent or less for a long (e.g., 15 inch, 10 mW) tube. These take place over the course of a few seconds or minutes and are very obvious using any sort of laser power meter or optical sensor. Even the unaided eyeball may detect a 20 percent change. The more modes that can be active simulataneously, the closer those that are active can be to the same output power on the gain curve. Very short tubes or those with low gain (other wavelengths than 632.8 nm or due to age/use or poor design) may vary widely in output intensity or even cycle on and off due to mode cycling. (Note that since the polarization for each mode may be different, reflecting the beam of one of these HeNe lasers from a non-metallic reflective surface (which acts somewhat as a polarizaer) can result in a large variation in brightness as the dominant polarization changes orientation over time.) Trading off between tube size and mode cycling intensity variations is one reason that HeNe tubes with otherwise similar power output and beam characteristics come in various lengths.

    There are also stabilized HeNe lasers which use optical feedback to maintain the output intensity with a less than 1 percent variation. (They usually also have a frequency stabilized mode but can't do both at the same time.) An alternative to doing it in the laser is to have an external AO modulator or other type of variable attenuator in a feedback loop monitoring optical output power. See the next section for more info.

    Short term changes in intensity may result from power supply ripple and would thus be at the frequency related to the power line or inverter. These can be minimized with careful power supply design.

    Intensity variations at 100s of MHz or GHz rates result from beats between the various longitudinal modes that may be simultaneously active in the cavity. For most common applications, these can be ignored since they will be removed by typical sensor systems unless designed specifically to respond to these high beat frequencies.

    Also see the section: Amplitude Noise.

    Stabilized Single Frequency HeNe Lasers

    The common HeNe laser, while highly monochromatic, may not produce just a single frequency (or equivalently, wavelength) of light. As noted in the section: Longitudinal Modes of Operation, several closely spaced frequencies will generally be active at the same time and their precise values and intensities will change over time. For many applications, this doesn't matter. However, for others, it makes such a laser useless.

    If you have, say, $5,000 to spend on a HeNe laser, you can buy something that actually produces a single frequency with specifications guaranteed stable for days and that don't change over a wide temperature range. While the operation of such a HeNe laser is basically the same as the one in a barcode scanner (and in fact may use the identical model HeNe laser tube!), several additional enhancements are needed to eliminate mode sweep and select a single output frequency. Simply constructing the laser cavity of low thermal expansion materials isn't enough when dealing with distances on the order of a fraction of a wavelength of light! Active feedback is needed. The most common implementation of these lasers starts with a short tube that can only oscillate on at most 3 longitudinal modes. It then adds optical feedback to keep them in a fixed location on the HeNe gain curve by precisely adjusting the distance between the mirrors over a range of about 1/2 the lasing wavelength. This is most often done with a heating coil (inside or outside the tube), but a PieZo Transducer (PZT, an expensive version of the beeper element in a digital watch) may also be used. The PZT reduces the time for the system to stabilize to a few seconds, compared to 10 or 20 minutes for the heater. But, for a laser that will be left on continuously, this probably doesn't matter. Some lasers use a means of cooling in addition to the heater like a piezo fan, probably to allow the laser to run stably over a wider temperature range. And a few including the Melles Griot 05-STP-909/910/911/912 (originally based on teh Aerotech Syncrolase 100) use a miniature RF induction heater surrounding the HR mirror mount to control only its length, not that of the entire tube. With direct heating of such a small mass, the response is quite fast. This also makes for a more compact package than a full tube heater.

    Many schemes work well and it's amazing how dirt simple these really are, considering their hefty price tags! It's easy to build perfectly usable systems from a common surplus HeNe laser tube and a few common junk parts.

    Note that an etalon inside the laser cavity could also be used to select out a single longitudinal mode. For high power lasers which would require long tubes supporting many modes, this would be needed with both the overall mirror spacing and etalon being feedback controlled. But for low power lasers (e.g. 1 to 3 mW), the use of a short tube to limit the number of modes in conjuntion with basic feedback control is a much less complex lower cost approach.

    Commercial stabilized HeNe lasers usually fall into one of two classes:

    1. One or Two Mode stabilized systems: These use random polarized HeNe laser tubes that are short enough that only a few modes will oscillate at the same time. Adjacent modes of a random polarized HeNe laser tube are almost always orthogonally polarized. So, where two modes are oscillating, separate signals corresponding to the amplitude of each mode can be easily obtained by feeding a pair of photodiodes from a polarizing beamsplitter. (If a tube has modes that aren't orthogonally polarized or that behave strangely, it gets recycled into another application or the dumpster.) The signals may be obtained from the waste beam out of the HR mirror of the laser or by sampling a portion of the output beam. Either one or both of the photodiode signals can then be used for the feedback loop depending on whether intensity or frequency stability is most important. Note that under some conditions, up to 3 or even 4 modes may be permissible in a tube that is to be used for these purposes. More below.

      • Where the best frequency stability is desired, the ratio of the mode signals (usually made 1:1) is used in the feedback loop. This results in better absolute frequency stability since this ratio is independent of the actual output power, which may change as the tube warms up and ages due to use. With a ratio of 1:1, the two modes are parked equally spaced on either side of the gain curve. Even if the tube oscillates on 3 modes if one is near the center of the gain curve (1 strong one and 2 weak ones), there will only be 2 modes when stabilized.

        Some inexpensive (this is relative!) stabilized HeNe lasers only use a single mode for frequency locking. When on the slope, this will be reasonably stable after warmup once the output power has reached equilibrium.

      • When the best intensity stability with a polarized output is desired, the signal from a single mode (one photodiode channel) is compared to a reference voltage and this becomes the error signal in a feedback loop to put its mode near the center of the gain curve. Even if the tube oscillates on up to 4 modes if there are two on either side of the gain curve, with one near the center of the gain curve when stabilized, there will be at most 2 weaker modes on the tails of the gain curve. Since these will be orthogonally polarized to the dominant center mode, they can be blocked by the output polarizer.

        When the best intensity stability of the total output (without regard to polarization) is desired, a non-polarizing beam sampler is used or the signals from the two photodiode channels are summed and compared to the reference.

    2. Zeeman split systems: In both of these, a magnetic field is used to create a pair of lasing modes that differe from each other by a relatively small frequency.

      • Axial: Like the single mode systems described above, the tube length is such that only a single longitudinal mode will oscillate. However, a powerful axial magnetic field splits this single mode into two sub-modes with counterrotating circular polarization states. When passed through a polarizer at the output, this results in a beat frequency in the 100s of kHz to several MHz range (depending on the magnetic field strength and other factors) which may be used to derive the stabilization feedback signal and is also key to the measurement technique for which these are designed.

      • Transverse: Like the two mode systems described above, the tube length is such that a pair of modes can oscillate when straddling the gain curve but only a single mode when at the peak. A moderate transverse magnetic field in conjunction with the natural birefringence of the mirror system results in a beam frequency in the 10s to 100s of kHz range. Since the beat frequency varies slightly with the mode position, it may be used in a PLL feedback loop for frequency stabilization.

    Most commercial stabilized HeNe lasers for general laboratory applications are of type (1) and operate with 2 orthogonal modes for frequency stabilization, though some use 1 mode for intensity stabilization. These include the Coherent 200, Spectra-Physics 117 and 117A (and the identical Melles Griot 05-STP-901), various models from Teletrac, Zygo, and others. The interferometry lasers used in metrology manufactured by Agilent (formerly Hewlett Packard) and others are of type (2).

    For example, in the Melles Griot 05-STP series of frequency and intensity stabilized HeNe lasers, the laser cavity permits a pair of orthogonal polarized longitudinal modes to be active and can provide very precise control by straddling these on the steep slopes of the gain curve (frequency stabilized mode) or positioning one on the flatter portion of the gain curve (intensity stabilized mode). Those from other companies are generally similar.

    For some photos of the (quite simple) Zeeman split stabilized HeNe tube used in the Hewlett-Packard 5517 laser head, see the Laser Equipment Gallery (Version 1.86 or higher) under "Assorted Helium-Neon Lasers". And for more information on these lasers, see the sections starting with: Hewlett-Packard HeNe Lasers.

    It isn't really possible to convert an inexpensive HeNe tube that operates on many longitudinal modes into a single frequency laser. Adding temperature control could reduce the tendency for mode hopping or polarization changes, and the addition of powerful magnets can force a polarized beam and probably stabilize the discharge. But, selecting out a single longitudinal mode would be difficult without access to the inside of the tube. However, if the HeNe tube is short enough that the mode spacing exceeds about 1/2 the doppler broadened gain bandwidth for neon (about 1.5 GHz), it will oscillate on at most 2 longitudinal modes at any given time and these will each be linearly polarized and usually orthogonal to each-other. Then, stabilization is possible using very simple hardware. In fact, even if the mode spacing is a bit smaller - down to 500 or 600 MHz - then only 2 modes will be present most of the time but 3 may pop up if one is close to the center of the gain curve. This, too, is an acceptable situation since the tube can be stabilized with the modes straddling the gain curve and then only 2 modes will oscillate. For intensity stabilization, 4 modes may even be permitted. Note that while the modes of a random polarized and linearly polarized tube are similar (except for polarization), a random polarized tube is desirable to be able to use a tube that supports 2 modes to with the benefits they provide, but be able to eliminate the second mode in the output. Also see the section: Inexpensive Home-Built Frequency or Intensity Stabilized HeNe Laser for details.

    It may be possible with a combination of what can be done externally, as well as control of discharge current, to force a situation where gain is adequate for only 1 or 2 modes even for a longer tube. Whether this could ever be a reliable long term approach for a HeNe tube that normally oscillates in many longitudinal modes is questionable. What I don't think will have much success are optical approaches such as feeding light back in through the output mirror. Doing this would likely have the exact opposite of the desired effect but may work in special cases (it's called injection locking and is used with great success for other applications).

    Coherent, Melles Griot, Spectra-Physics, and others will sell you a small stand-alone stabilized HeNe laser for $5,000 or so and Agilant (HP) and others have interferometers and other similar equipment which includes this type of laser (and are even more expensive!). Other manufacturers includ Zygo, Teletrac, Nikon, Micro-g Solutions, SIOS, NEOARK, and Nikon. The lab lasers that I've seen all use short HeNe tubes with feedback thermal control of the resonator length and all operate at the red HeNe wavelength (632.8xxxxxx nm to 8 or more significant figures). One typical system is described in the section: Coherent Model 200 Single Frequency HeNe Laser. The Spectra-Physics model 117A/118A laser actually uses a lowly SP088-2 tube similar to those in older grocery store barcode checkout scanners as its heart. A tube like this is visible in the Spectra-Physics Model 117 OEM Stabilized HeNe Laser Assembly. However, some do employ a custom tube with the heater inside to greatly speed up response and reduce heat dissipation to the outside. A stabilized HeNe laser for green or other color visible HeNe wavelength or one of the IR wavelengths is also possible using the same techniques.

    As noted above, the actual stabilization mechanism for the general purpose stabilized lasers may be the ratio of amplitudes of two longitudinal modes (which is better for frequency stabilization) or the amplitude of one mode (which is better for intensity stabilization). These are usually stable to within a few parts in 109. However, the frequency drift when intensity stabilized is still not much - probably less than 1 part in 108. Output power variation may be 0.2 percent if intensity stabilized and 1 percent if frequency stabilized. Some allow either method to be selected via a switch, as well as providing for an external tuning input to vary the frequency over several hundred MHz. (However, due to the thermal control most often used, the response time is not exactly fast.)

    The Zeeman split interferometer lasers may lock the difference frequency to a crystal clock, though most seem to use the basic polarized modes for stabilization, with the Zeeman beat used only as the reference for the interferometer. See the sections starting with: Hewlett-Packard HeNe Lasers. A few do lock the Zeeman frequency to a PLL. One of these was the Laboratory for Science Model 220. (Laboratory for Science is now out of business.) See the section Laboratory for Science Stabilized HeNe Lasers. Another example is the NEORK Model 262 Transverse Zeeman Laser.

    More sophisticated schemes with even better precision and lower long term drift may lock to the "Lamb Dip" at the center of the neon gain curve or to one of the hyperfine absorption lines of an iodine vapor other type of gas cell, achieving stabilities on the order of 1 part in 1010 or even better. See, for example: NPL Iodine-Stabilized HeNe Reference Lasers and Winters Electro-Optics, Inc..

    Due to the performance, simplicity, reliability, and relatively low cost of stabilized HeNe lasers, they are still often the preferred frequency reference for many applications. As noted, a typical system might go for $5,000. While this may seem high, it is small compared to many other technologies. The cost is not the result of expensive components or complex manufacturing, but more to the relatively limited number of units produced. If stabilized HeNe lasers were as popular as laser pointers, they would probably cost under $100.

    On-line Introductions to HeNe Lasers

    There are a number of Web sites with laser information and tutorials.



  • Back to Helium-Neon Lasers Sub-Table of Contents.

    HeNe Laser Tubes, Heads, Structure, Power Requirements, Lifetime

    Early Versus Modern HeNe Lasers

    In the first HeNe lasers (see the diagram below), exciting the gas atoms to the higher energy level was accomplished by coupling a radio frequency (RF) source (i.e., a radio transmitter) to the tube via external electrodes. Modern HeNe lasers almost always operate on a DC discharge via internal electrodes.

    
          Bellows                                                Bellows
          /\/\/\      Discharge tube with external electrodes     /\/\/\
         ||     \________________________________________________/     ||
         ||             | |                | |              | |        ||===> Laser
         ||      ___  __|_|________________|_|______________|_|__      ||===> Beam
         ||     /   ||   |                  |                |   \     ||
          \/\/\/    ||   |                  o                |    \/\/\/
     Adjustable     ||   +-----------o RF exciter o----------+     Adjustable
      totally       ||                                              partially
     reflecting     ||<-- to vacuum system                         reflecting
       mirror                                                        mirror
    
    

    Early HeNe lasers were also quite large and unwieldy in comparison to modern devices. A laser such as the one depicted above was over 1 meter in length but could only produce about 1 mW of optical beam power! The associated RF exciter was as large as a microwave oven. With adjustable mirrors and a tendency to lose helium via diffusion under the electrodes, they were a finicky piece of laboratory apparatus with a lifetime measured in hundreds of operating hours.

    In comparison, a modern 1 mW internal mirror HeNe laser tube can be less than 150 mm (6 inches) in total length, may be powered by a solid state inverter the size of half a stick of butter, and will last more than 20,000 hours without any maintenance or a noticeable change in its performance characteristics.

    Older brochures from several manufacturers of HeNe lasers can be found at Vintage Lasers and Accessories Brochures

    Structure of Internal Mirror HeNe Lasers

    The following applies to most of the inexpensive internal mirror low to medium power (0.5 to 5 mW) HeNe tubes available on the surplus market. Depending on the original application, the actual laser tube may be enclosed inside a laser head or arrive naked. :-)

    This fabulous ASCII rendition of a typical small HeNe laser tube should make everything perfectly clear. :-)

    
                    ____________________________________________
                   /                         _________________  \
            Anode |\  Helium+neon, 2-5 Torr   Cathode can ^   \  |
            .-.---' \.--------------------------------------.  '-'---.-.     Main
        <---| |::::  :======================================:   :::::| |===> beam
            '-'-+-. /'--------------------------------------'  .-.-+-'-'
     Totally    | |/  Glass capillary ^      _________________/  | |  Partially
     reflecting |  \____________________________________________/  |  reflecting
     mirror     |                                                  |  mirror
                |          Rb          +               -           |
                +---------/\/\---------o 1.2 to 3 kVDC o-----------+
    
    

    The main beam may emerge from either end of the tube depending on its design, not necessarily the cathode-end as shown. (For most applications it doesn't matter. However, when mounted in a laser head, it makes sense to put the anode and high voltage at the opposite end from the output aperture both for safety and to minimize the wiring length.) A much lower power beam will likely emerge from the opposite end if it isn't covered - the 'totally reflecting' mirror or 'High Reflector' (HR) doesn't quite have 100 percent reflectivity (though it is close - usually better than 99.9%). Where both mirrors are uncovered, you can tell which end the beam will come from without powering the tube by observing the surfaces of the mirrors - the output-end or 'Output Coupler' (OC) mirror will be Anti-Reflection (AR) coated like a camera or binocular lens. The central portion (at least) of its surface will have a dark coloration (probably blue or violet) and may even appear to vanish unless viewed at an oblique angle.

    For a diagram with a little more artistic merit, see: Typical HeNe Laser Tube Structure and Connections. And, for a diagram of a complete laser head: Typical HeNe Laser Head (Courtesy of Melles Griot). For some photos, see: Typical Small to Medium Size Melles Griot HeNe Laser Tubes. The ratings are guaranteed output power. These tubes may produce much more when new. Another type of construction that is relatively common is shown in the Hughes Style HeNe Laser Tube and a photo in Hughes 3227-HPC HeNe Laser Tube. These are probably disappearing though as Melles Griot bought the Hughes HeNe laser operation and is converting most to their own design but many still show up on the surplus market, including newer ones with the Melles Griot label. Another design that is similar is the NEC Style HeNe Laser Tube. Some specifications for various NEC HeNe lasers can be found at SOC under "Gas Lasers". Most common higher quality HeNe tubes will be basically similar to one of these two designs though details may vary considerably. Most have an outer glass envelope but a few, notably some of those from PMS/REO, may be nearly all metal (probably Kovar but with an aluminum liner which is the actual cathode) with glasswork similar to that of Huches or NEC at the anode-end.

    Tubes up to at least 35 mW are similar in design but proportionally larger, require higher voltage and possibly slightly higher current. and of course, will be more expensive.

    HeNe tubes used in barcode scanners tend to use a simpler (possibly cheaper) design. Some typical examples are the Uniphase 098-1 HeNe Laser Tube and Siemens LGR-7641S HeNe Laser Tube. A typical small barcode scanner tube is shown in Uniphase HeNe Laser Tube with External Lens. That negative lens is used in the barcode application to expand the beam at a faster rate than with the bare tube. A second positive lens about 4 inches away is then used to recollimate the beam. (In many cases, the required curvature is built into the output mirror but not here. The lens was removed by soaking the end of the tube in acetone overnight.)

    CAUTION: While most modern HeNe tubes use the mirror mounts for the high voltage connections, there are exceptions and older tubes may have unusual arrangements where the anode is just a wire fused into the glass and/or the cathode has a terminal separate from the mirror mount at that end of the tube. Miswiring can result in tube damage even if the laser appears to work normally. See the section: Identifying Connections to Unmarked HeNe Tube or Laser Head if in doubt.

    Gas Fill and Getter

    In order for an HeNe laser to operate efficiently (as such things go) or at all, there must be a very precise and pure mixture of helium and neon gas in the tube. The total amount of gas in a typical 1 mW HeNe tube is much less than 1 cubic cm if it were measured at normal atmospheric pressure. It fills the tube only because the pressure is very low. However, with this small amount of gas, it doesn't take much contamination or leakage to ruin the tube.

    Mirrors in Sealed HeNe Tubes

    (See: Typical Small to Medium Size Melles Griot HeNe Laser Tubes for views of the types of mirrors and mirror mounts discussed below.)

    The mirrors used in lasers are a bit more sophisticated than your bathroom variety:

    Mirror Reflectances for Some Typical HeNe Lasers

    Here are some (approximate) typical OC reflectances for red (632.8 nm) HeNe lasers determined by measuring the actual transmission (R = 100 - T) of a red HeNe laser beam through the optic with a simple photodiode based laser power meter:

    The HRs in all cases showed greater than 99.9 percent reflectivity (T less than 0.001 - virtually undetectable on my fabulous meter).

    Due to the behavior of the photodiode at low light levels, the absolute precision of the readings is somewhat questionable. However, the relative reflectivities of these mirrors is probably reasonably accurate. Note, in particular, the high R of 99.4% for the very long external mirror laser compared to the low R of 97.7% (T of 2.3%) for a shorter internal mirror tube. I expect that in addition to the length of the bore, part of this difference is due to the absence of Brewster window losses in the internal mirror tube resulting in a higher gain so that more energy can be extracted via the OC on each pass.

    Mirrors for non-red HeNe lasers must be of even higher quality due to the lower gain on the other spectral lines. The OC will also have higher reflectivity for this reason. For green HeNe tubes (which have the lowest gain of all the visible HeNe wavelengths), the transmission is about 1/10th that of a similar length red tube. For example, the reflectivity of a typical green HeNe tube OC is 99.92 to 99.95 percent (.08 to .05 percent transmission) at 543.5 nm.

    Notes on making these measurements:

    More About HeNe Dielectric Mirrors

    In the mid 1980s, before Ion Beam Sputtered (IBS) coatings really made their commercial debut, some mirrors were still Epoxied (soft-sealed), particularly those with a lot of coating layers (like 20 or 30), mostly green, yellow, and IR HeNe lasers. These tubes need sharp cutoffs (to kill lasing on unwanted wavelengths) and/or ultra high reflectivity (due to their very low gain) in the coatings - which means a lot of layers. The packing density on Electron-Beam (E-Beam) coatings is not great, so water molecules get into all the layers. When you hard-seal the mirror by heating the frit, the water comes out and cracks the coating (called a 'crazed' mirror). Another problem with mega-stack E-Beam coatings is that the transmittance curve can shift as much as 10 nm (to longer wavelengths - the layers get thicker) during the oven cycle (again a water-thing). If you have to, say, highly reflect at 594.1 nm (for a yellow output tube) and highly transmit beyond 604.6 nm (to kill the orange and red), and your coating shifts 10 nm in the oven cycle, another batch of tubes ends up in the dumpster. :( No! Send the my way. :)

    Ion Beam Sputtered (IBS) coatings have a much higher packing density, so they withstand the (i.e., 450 °C) frit sealing temperatures and don't even shift 1 nm. Nowadays, everything is hard sealed, with the exception of the high-end (long precision) Brewster tubes. Hard-sealing a BK-7 window puts a lot of stress on it, and that just isn't acceptable on the high-Q tubes. So, those get fused silica windows optically contacted (lapped and polished surfaces that are vacuum tight.) (In fact, with this type of seal, if there is no adhesive present, the windows can be easily removed from your dead, leaky, or up-to-air tubes by heating the Brewster stem and window with a heat gun. The window can then be popped off with your thum bnail!)

    Random and Linear Polarized HeNe Tubes

    Most common HeNe laser tubes are randomly polarized since for many applications the polarization of the beam doesn't matter. As noted elsewhere, the term "random" here really doesn't mean that the polarization is necessarily jumping around to totally arbitrary orientations. In fact, such behavior would be rather unusual. It just means that nothing special is done to control the polarization. The typical HeNe laser will lase on several longitudinal modes (how many will depend on tube length of the resonator) with adjacent modes having polarizations orthogonal to each-other. Each of the modes will change their relative intensities periodically over time or may even switch polarizations suddenly as the tube heats and expands. For the special case of a short tube where only two modes fit under the gain curve (typically 5 or 6 inches in length) at the instants when they are equal, the output will appear to be non-polarized (constant intensity as an external polarizer is rotated in the beam) but as the modes shift under the gain curve, one or the other polarization will dominate. For longer tubes, there will be much less of an effect because there will be multiple modes with both polarizations at all times.

    The main physical effect resulting in a particular polarization direction being favored in a random polarized HeNe tube is a slight preferred axis in the dielectric mirror coatings. Where this is very small or the mirrors at opposite ends of the tube happen to be oriented so their effects cancel out, the resulting polarization axes may indeed not be restricted to a fixed orientation. But most often, they are fixed for the life of the tube.

    Most linearly polarized HeNe laser tubes are similar to their randomly polarized cousins but include a Brewster plate or window inside the cavity which results in slightly higher gain for the desired polarization orientation Such tubes produce a highly polarized beam with a typical ratio of 500:1 or more between the selected and orthogonal polarization. External mirror HeNe lasers almost always use Brewster windows and so are inherently linearly polarized. A strong transverse magnetic field can also be used to force linear polarization and indeed, long before I observed this phenomenon, some commercial HeNe lasers offered a "polarization option" which was a set of magnets to be placed next to the bore. See the section: Unrandomizing the Polarization of a Randomly Polarized HeNe Tube.

    Another way to force linear polarization in a HeNe laser (or any other low gain laser) is to add a mirror at 45 degrees reflecting to the actual HR mirror, which is then at 90 degrees to the optic axis (facing sideways). The 45 degree mirror will have a slight polarization preference so it's reflectance will be extremely high at the desired polarization and slightly lossy at the unwanted one. Like the Brewster plate, this is enough to force linear polarization in low gain lasers. The undesirable losses from the extra mirror bounce may be less than the losses through a less than perfect Brewster plate or one with a slight orientation error, which is particularly important for "other color" HeNe lasers, especially green, which has the lowest gain. However, this approach is much less common than using a Brewster plate (even for green). I've only seen it in PMS green HeNe laser heads. Based on a test of the mirrors from a broken tube, the reflectance of the 45 degree mirror was about 99.997% for the preferred polarization orientation and 99.9% at the unwanted one. The 90 degree mirror had a reflectance of about 99.997% regardless of polarization. This difference in loss is far less than for a Brewster window but is still more than adequate for the green laser, though probably not for a higher gain red one. And the one PMS polarized yellow HeNe laser head I've had used a Brewster plate. For more info, see: U.S. Patent #6,567,456: Method and Apparatus for Achieving Polarization in a Laser using a Dual-Mirror Mirror Mount.

    Linearly polarized HeNe lasers tended to be used in older laser printers (since the external modulator often required a polarized beam) and older LaserDisc players (because the servo and data recovery optics required a polarized beam). Randomly polarized lasers were used in older barcode scanners since polarization doesn't matter there. Note the use of "older". Nowadays, this equipment all use diode lasers which are inherently polarized. I've heard of people retrofitting such equipment to use diode lasers without much difficulty, but your mileage may vary. :)

    More on Mode Cycling in Short HeNe Lasers

    As noted, a randomly polarized HeNe laser doesn't really produce arbitrary polarization but the individual longitudinal modes may switch polarizations as the tube warms up and expands. Where the distance between the mirrors is small - 5 or 6 inches as is the case with small HeNe laser tubes, only two adjacent modes will fit under the inhomogeneously Doppler broadened gain curve of neon. With only two active modes, effects of mode changes may be obvious even without anything more than Mark-I eyeballs and a polarizing filter but fancy equipment may be needed to fully characterize what's going on.

    (Portions from: Lynn Strickland (stricks760@earthlink.net).)

    Our testing suggested that adjacent modes always have orthogonal polarization - (lets go with S and P designations). BUT, in some two-mode tubes, a given mode doesn't always REMAIN S or P as it changes in frequency (it flips polarization). In "flippers", certain frequencies only support one polarization. If this frequency range is around the center of the gain curve, most power will be of one polarization regardless of temperature (so it appears to be linearly polarized). (However, the extinction ratio varies over time, and is generally poor).

    Here's a test setup that shows what's going on if you have access to some nice instrumentation: Send the beam from a two mode, randomly polarized HeNe tube (Example: 05-LHR-006) into a scanning Fabry-Perot interferometer (this is mucho more expensive than your basic exorbitantly priced optical spectrum analyzer). (However, you can build a scanning Fabry-Perot interferometer if so inclined. See the sections starting with: Scanning Fabry-Perot Interferometers. --- Sam.) Put a polarizer in the beam path, aligned to maximize P polarization (or S polarization, doesn't matter). Normally, the P mode will remain P polarization at all frequencies under the gain curve. So as the frequency changes (due to cavity length changes with temperature), the P mode will trace out a nice pretty sort of bell-shaped curve with a width of about 1.6 GHz FWHM. Bottom line, you can get P-polarized light at every frequency under the gain curve.

    In a 'flipper', your curve has missing sections. In other words, there are some frequencies where you cannot get P polarization. When the observed, P mode reaches one of these frequency ranges, it will flip and become S-polarized. When the flip occurs, the other, formerly S mode, turns into a P. If you're just looking at one polarization (as the experiment describes), the observed P mode disappears and pops up again at a frequency delta equal to the longitudinal mode spacing (where the S mode used to be). Some call it mode hop, but it really isn't, because both modes are still there. Both modes still have, and always had, orthogonal polarization - they just swapped. Some tubes flip at one point under the gain curve, some flip many times under the gain curve.

    This has to do with gain asymmetry. What brought it to our attention, is that when the polarizations flip, you get high frequency 'noise' if you have polarization sensitive components in your beam path. Solutions are to specify a laser that doesn't flip, go to a three mode (longer) laser, go to non-polarization sensitive optics all the way through the beam delivery/detection train, or put a bandwidth filter on your detector.

    A magnetic field will sometimes make a flipper stop, and sometimes make a non-flipper start - but not always. Sans magnetic field, over time (several thousand operating hours) our test population suggested that flippers always flip, non-flippers always behave.

    There is more on flippers below.

    HeNe Mode Flipper Observations

    The longitudinal modes of a HeNe laser tube sweep through the gain curve as the resonator heats and expands. On a random polarized tube, adjacent modes then to be orthogonally polarized due to non-linear mode competition (or something). With well behaved tubes, once a mode starts lasing with a given polarization as it exceeds threshold on one side of the gain curve, that polarization is fixed until the mode ceases lasing on the other side of the gain curve.

    A "flipper" tube is one where the polarization orientation of adjacent longitudinal modes flip places at a fixed location on the gain curve as the modes sweep through it. This peculiar behavior may not be detected where the laser is simply used as a source of photons (for the same reason that polarization effects of normal mode sweep tend to be minimal - the total power doesn't vary that much). But if are any polarization optical elements (intentional or not), significant sudden power fluctuations will be evident in the polarized beam(s).

    While I haven't seen any discussion of flipper theory, here are some thoughts.

    In the absence of external influences like magnetic fields, the mode orientation in a laser will be determined by two factors:

    Since a transverse magnetic field can also introduce a polarization preference, it is possible to cause a well behaved HeNe laser tube to exhibit flipper behavior by the careful placement of a strong magnet near the tube. I've demonstrated this with a normal Uniphase 098 laser. With no magnet, the mode sweep is perfectly ordinary with no tendency to flipping. By placing a single rare earth magnet next to the tube near the middle, it can be made to turn into a flipper with a mode plot very similar to that of a natural flipper. With too weak a magnetic field, there is no effect or a sort of shortened aborted flipping. With too strong a magnetic field, the polarization becomes locked to the magnetic field and the output ends up being linearly polarized.

    For that peculiar tube above which reverts to normal behavior at the very end of the warmup period, a very weak magnetic field will cause it to flip after the point of transition.

    Plot of "Flipper" Aerotech OEM1R HeNe Laser Head with Various Magnetic Fields Applied (Combined) shows the effect of a rare earth magnet at 4 orientations about 4 inches from the center of the laser head compared with no magnetic field. The magnetic field axis was horizontally aligned with one of the polarization axes of the laser. The magnet was rotated 90 degrees approximately every 30 seconds. The first and last orientation shows a mode sweep pattern that is relatively normal. They probably differ slightly because the magnet wasn't in exactly the same position. The tube was allowed to completely warm up with the magnets in the last orientation with no significant change in the plot, even after the transition point where the tube reverts from flipper to normal behavior with no magnetic field A closeup is shown in Plot of "Flipper" Aerotech OEM1R HeNe Laser Head with Magnetic Field Induced Somewhat Normal Behavior (Combined). While very different than the mode plot of the tube after warmup with no magnetic field, the flips are gone (no vertical jumps) and it's relatively well behaved.

    Conversely, it should be theoratically possible to suppress flipper behavior with a suitably placed magnet. Getting this to work is more problematic since the magnetic field has to exactly counteract the natural polarization birefringence. But I was able to somewhat do this with my flipper head so that the mode sweep became well behaved. This was more finicky than going the other way. Almost any magnetic field did disrupt the normal flipper behavior. But getting it to be really well behaved was more difficult.

    Of course, a magnetic field will also introduce other effects due to Zeeman splitting which may be detrimental depending on the application.

    Note that mirror alignment which may affect the resonator orientation preference had no effect on flipper behavior. Pressing on the mirror mount of my flipper tube in any direction would reduce the output power significantly due to changing mirror alignment. But the mode flips still occurred, and appeared to be at approximately the same location on the gain curve.

    Polarization of Longitudinal Modes in HeNe Lasers

    It is well known that adjacent longitudinal modes in HeNe lasers (at least) tend to be orthogonally polarized as discussed above. This is a weak coupling as a magnetic field, Brewster plate, or even some asymmetry in the cavity can affect it or kill it entirely. And some lasers will cause the polarization to suddenly flip as modes cycle through the gain curve.

    But what is the underlying cause?

    (From: A. E. Siegman (siegman@stanford.edu).)

    The reason that HeNe lasers can run - more accurately, like to run - in multiple axial modes is associated with inhomogeneous line broadening (See section 3.7, pp. 157-175 of my book) and "hole burning" effects (Section 12.2, pp. 462-465 and in more detail in Chapter 30) in the doppler-broadened laser transitions commonly found in gas lasers (though not so strongly in CO2) and not in solid-state lasers.

    The tendency for alternate modes to run in crossed polarizations is a bit more complex and has to do with the fact that most simple gas laser transitions actually have multiple upper and lower levels which are slightly split by small Zeeman splitting effects. Each transition is thus a superposition of several slightly shifted transitions between upper and lower Zeeman levels, with these individual transitions having different polarization selection rules (Section 3.3, pp. 135-142, including a very simple example in Fig. 3.7). All the modes basically share or compete for gain from all the transitions.

    The analytical description of laser action then becomes a bit complex - each axial mode is trying to extract the most gain from all the subtransitions, while doing its best to suppress all the other modes - but the bottom line is that each mode usually comes out best, or suffers the least competition with adjacent modes, if adjacent modes are orthogonally polarized.

    There were a lot of complex papers on these phenomena in the early days of gas lasers; the laser systems studied were commonly referred to as "Zeeman lasers". I have a note that says a paper by D. Lenstra in Phys. Reports, 1980, pp. 289-373 provides a lengthy and detailed report on Zeeman lasers. I didn't attempt to cover this in my book because it gets too complex and lengthy and a bit too esoteric for available space and reader interest. The early (and good) book by Sargent, Scully and Lamb has a chapter on the subject. You're probably aware that Hewlett Packard developed an in-house HeNe laser short enough that it oscillated in just two such orthogonally polarized modes, and used (probably still uses) the two frequencies as the base frequencies for their precision metrology interferometer system for machine tools, aligning airliner and ship frames, and stuff like that.

    (From: Sam.)

    Indeed, HP has several models of two-frequency HeNe lasers but the ones I'm familiar with actually use an external magnet to create Zeeman splitting. Rather than two longitudinal modes, a PZT or heater is used to adjust cavity length so that only a single mode is oscillating, which is split by the Zeeman effect. Then, the difference frequency (in the low MHz range) is used in the measurement system as a reference and possibly for stabilizing the (optical) frequency. See the section: Hewlett-Packard HeNe Lasers.

    The Spectra-Physics model 117A frequency stabilized HeNe laser is designed more like what you are describing - two modes, no magnets. A heater is used to adjust cavity length in a feedback loop using a pair of photodiodes to monitor the two orthogonal polarized modes. However, I would assume that based on its description, the desired operating conditions would be for it to run with a single mode (which it can with carefully controlled cavity length). See the section: Description of the SP-117A Laser. The Coherent and Melles Griot stabilized HeNe lasers are similar.

    Power Requirements for HeNe Lasers

    Power for a HeNe laser is provided by a special high voltage power supply (see the chapter: HeNe Laser Power Supplies and consists of two parts (these maximum values depend on tube size - a typical 1 to 10 mW tube is assumed):

    A few HeNe lasers - usually larger or research types - have used a radio frequency (RF) generator - essentially a radio transmitter to excite the discharge. This was the case with the original HeNe laser but is quite rare today given the design of internal mirror HeNe tubes and the relative simplicity of the required DC power supply.

    Operating Regions of a HeNe Laser Tube

    There are several distinct operating regions for a HeNe plasma discharge as a function of tube current each of which has its own properties. The following summary is partially extracted from the HeNe Laser Manual by Elden Peterson and is mostly just for curiosity sake as there is little reason to run a HeNe laser tube at anything other than close to the nominal current (which results in maximum power output and rated life) listed in the tube specifications except possibly to implement low level modulation for laser communications.

    Note that the visual effect of increasing current from dropout to cessation of output will just be a smooth increase and then decrease in coherent optical output power. To detect the single frequency or broadband noise will require a sensor and oscilloscope with a bandwidth of at least a few MHz.

    Also of note is that the HeNe laser power supply itself will contribute to optical ripple and noise. A DC input switchmode (inverter) power supply will have ripple at the switching frequency. This is typically in the range of 1 to 5 percent of the operating current and will result in an optical power variation of a few tenths of a percent. An AC input linear power supply will have some ripple at 1X or 2X of the line frequency (with some harmonics) even with a regulator. An AC input switcher (most bricks) will have both types of ripple. Special low noise power supplies are available for critical applications. However, for most common uses, the additional cost is not justified. There are some more comments on this topic in the section: Intensity Stabilized HeNe Laser.

    HeNe Tube Dimensions, Drive, and Power Output

    A large number of factors interact to determine the design of a modern HeNe laser. Beam/bore diameter, bore length, gas fill pressure, voltage, current, and mirror design, are all critical in determining how much output power will be produced - or whether a given tube will lase at all. Hundreds (at least) of technical papers and entire phone book size volumes filled with equations have no doubt been written on these topics and we can't hope to do anything serious in a few paragraphs, but at least, may be able to give you a feel for some of the relationships among power output, bore dimensions, gas pressure, and drive requirements in particular.

    You have probably wondered why the beam from a typical HeNe laser (without additional optics) is so narrow. Is it that making a tube with larger mirrors would be more costly?

    No, it's not cost. Even high quality and very expensive lab lasers still have narrow bores. The very first HeNe lasers did use something like a 1 cm bore but their efficiency was even more mediocre than modern ones. A wide bore tube would actually be cheaper to manufacture than one requiring a super straight narrow capillary. However, it wouldn't work too well.

    A combination of the current density needed in the bore, optimal gas pressure, gain/unit length in the bore, the bore wall itself aiding in the depopulation of lower energy states, and the desire for a TEM00 (single transverse mode) beam (there are multimode tubes that have slightly wider bores), all interact in the selection of bore diameter.

    In fact, there is a mathematical relationship between bore size, gas pressure, and tube current resulting in maximum power output and long life.

    The optimal pressure at which stimulated emission occurs in a HeNe laser is inversely proportional to bore diameter. According the one source (Scientific American, in their Amateur Scientist article on the home-built HeNe laser - see the chapter: Home-Built Helium-Neon (HeNe) Laser), the pressure in Torr is equal to 3.6 divided by the ID of the bore. I don't know whether this exact number applies to modern internal mirror tubes but it will likely be similar. Power output decreases on either side of the optimal pressure but a laser with a low loss resonator may still produce some output above twice and below half this value.

    Thus, as the bore diameter is increased, the optimal pressure drops. Aside from having fewer atoms to contribute to lasing resulting in a decrease in gain, below a pressure of about .5 to 1 Torr, the electrons can acquire sufficient energy (large mean-free-path?) to cause excessive sputtering at the electrodes. This will bury gas atoms under the sputtered metal (which may also coat the mirrors) leading to a runaway condition of further decreasing pressure, more sputtering, etc. Even with the large gas reservoir of your typical HeNe tube (which IS the main purpose of all that extra volume), there may still be some loss over time. A drop in gas pressure after many hours of operation is one mechanism that results in a reduction in output power and eventual failure of HeNe tubes.

    As a result, the maximum bore diameter you will see in a commercial HeNe laser will likely be about 2 mm ID (for those multimode tubes mentioned above where the objective is higher power in a short tube). Most are in the 0.5 to 1.2 mm range. This results in high enough pressure to minimize sputtering, maximize life, provide maximum power output, and optimal efficiency (to the extent that this can be discussed with respect to HeNe lasers! Well, ion lasers are even worse in the efficiency department so one shouldn't complain too much. Since total resonator gain is proportional to bore length and approximately inversely proportional to bore diameter (since the optimal pressure increases resulting in a higher density of lasing atoms), this favors tubes with long narrow bores. But these are difficult to construct and maintain in alignment. Wide bore tubes have lower gain but a higher total number of atoms participating with potentially higher power output at the optimal pressure and current density. Everything is a tradeoff!

    However, all this does provide a way of estimating the power output and drive requirements of a HeNe tube or at least comparing tubes based on dimensions. Assuming a tube with a particular bore length (L) is filled to the optimum pressure for its bore diameter (D), power output will be roughly proportional to D * L, discharge voltage will be roughly proportional to L (probably minus a constant to account for the cathode work function), and discharge current will be roughly proportional to D. (Note that D instead of the cross-sectional area is involved because the optimal pressure and thus density of available lasing atoms is inversely proportional to D.)

    So, do the numbers work? Well, sort of. Here are specifications for some selected Melles Griot red HeNe tubes rearranged for this comparison:

       Total    Bore      Bore    --- Ratio of ---  Discharge  Discharge   Output
       Lgth   Lgth (L)  Dia. (D)  L   D   (D * L)    Voltage    Current    Power
     ------------------------------------------------------------------------------
       135 mm   80 mm    .46 mm   1   1     1         900 V      3.3 mA     .5 mW
       177 mm  115 mm    .53 mm   1.4 1.15  1.6     1,130 V      4.5 mA    1.0 mW
       255 mm  190 mm    .72 mm   2.4 1.57  3.7     1,360 V      6.5 mA    2.0 mW
       370 mm  300 mm    .80 mm   3.8 1.7   6.4     1,800 V      6.5 mA    5.0 mW
       440 mm  365 mm    .65 mm   4.6 1.4   6.4     2,150 V      6.5 mA     10 mW
       930 mm  855 mm   1.23 mm  11.1 2.7  29.9     4,500 V      8.0 mA   25-35 mW
    

    (Bore length was estimated since the cathode-end of the capillary is not visible without X-raying the tube or by optically determining its position through the mirror!)

    The general relationships seem to hold though large tubes seem to produce higher output power than predicted possibly constant losses represent a smaller overhead. As noted elsewhere there is also a wide variation even for tubes with similar physical dimensions. Oh well...

    There are more examples in the section:Typical HeNe Tube Specifications. You can do the calculations. And, some large IR HeNe lasers may use a somewhat wider bore. See the section: Spectra-Physics 120, 124, and 125 HeNe Laser Specifications for a comparison of visible and IR HeNe tubes for the same model laser.

    Note that there are some multi-mode (non-TEM00) HeNe tubes with wider bores and a different mirror curvature that produce up to perhaps twice the power output for a given tube length. However, with multiple transverse modes, these are not suitable for many applications like interferometry and holography. They are also not very common compared to single-mode TEM00 HeNe tubes.

    Largest HeNe Laser?

    (From: Chris Leubner (cdleubner@ameritech.net).)

    The most powerful HeNe laser I have ever seen was 160 mW of real power and was the only time I've ever seen a HeNe laser burn anything before with raw beamage. It would slowly burn electrical tape placed in the beam and felt warm on your skin. It was made of two almost 6 foot long Spectra-Physics model 125 tubes hooked electrically to separate power supplies and optically in series in a custom made double-wide sized 125 head. Sadly, it doesn't work anymore and is currently resting piecefully in the NTC laser department's laser graveyard. :-(

    (From: Steve Roberts (osteven@akrobiz.com).)

    I've seen a normal SP-125 break 160 mW on its own. Two tubes at only 160 mW sounds like it was misaligned, not that I'd like to try to align that one! :)

    The current record is for a Chinese researcher using 2 tubes with a flattened elliptical profile in a V fold resonator to get 330+ mW into a fiber. The beam shape and divergence from this are not what you would expect from a typical HeNe laser, even one that runs multi (transverse) mode. Remember that a HeNe laser's power is limited by collisions with the tube wall returning Ne atoms to the ground state, so using a flattened tube means more wall area, hence more power. Optimal gas pressure is a function of bore diameter as well. So you're limited to about a 1 meter tube in most cases by other optics reasons and sputtering. With collisions with the wall increased by a larger wall surface area, what the folks in China did is try tubes with different cross sections. To get enough length they folded the resonator using a 3 optic V-fold. You don't want to see the beam profile. It's nasty! It looks kind of like this: <{[=]}>. And the divergence is high as the optics need to fill that whole lasing volume.

    Please note, however, that going to a large rectangular or star shaped tube is not possible due to some quirks in the plasma at the pressure required for HeNe laser operation. Details are in a 1996 issue of Review of Scientific Instruments. A few years ago, Cornell University attempted to sell the rights to the unit in the United States, on behalf of the Chinese Inventor. U.S. patent and marketing were assigned to a group that sadly dropped the ball. At the time, the picture of the unit looked like one of those old foldaway sewing machines like my mom used to have, an ornamental blue box about the size of a PC Tower turned on its side with 4 wooden legs.

    Boosting the Power Output of a HeNe Laser?

    Unfortunately, given the existing laws of physics, there usually isn't much you can do to increase the output power of a HeNe laser above its specified ratings. Unlike an ion laser where higher tube current usually increases power output (at the expense of tube life), boosting current to a HeNe tube beyond the optimal amount actually *decreases* power output. Options like Q-switching don't exist for HeNe lasers.

    Bare HeNe Tubes and Laser Heads

    What you have may be a 'bare' tube or it may be encased in a cylindrical or rectangular laser head - or something in between:

    If you have a laser head that is missing the Alden connector, replacements should be available from the major laser surplus suppliers or salvage one from another (dead) head. I also have many available. Where the end-cap on a cylindrical laser head is also missing, there are no readily available commercial sources - fabricate one from a block of wood and paint it black or find some other creative solution. A suitable ballast resistance must also be installed between the positive power supply output and the HeNe tube anode.

    The cylindrical head serves another purpose besides structural support and protection. This is the distribution of heat and equalization of thermal gradients. Thus, removing a long HeNe tube in particular from its laser head may result in somewhat random or periodic cycling of power output due to convection and other non-uniform cooling effects.

    Often, particularly inside equipment like barcode scanners, you will see something in between: A HeNe tube wrapped in several layers of thick aluminum foil probably to help distribute and equalize the heating of the tube for the reason cited above. However, I haven't really noticed any obvious difference in stability when this wrap was removed. Spectra-Physics is very fond of this but others may have copied it to sell compatible tubes.

    HeNe Tube Seals and Lifetime

    Neon signs last a long times - years - how about HeNe laser tubes?

    The operating lifetime of a typical HeNe laser tube is greater than 15,000 hours when used within its specified ratings (operating current, proper polarity, and not continuously restarting). Under these conditions, end-of-life occurs when the oxide "pickling" layer of the cathode can gets depleted. Larger diameter (1.5 or 2 inch) tubes last the longest - up to 50,000 hours or more. Small diameter (0.75 or 1 inch) tubes have the shortest lifetime - 10,000 hours or so. Since even 10,000 hours is still very long - over 1 year of continuous operation - HeNe laser lifetime is not a major consideration for most hobbyist applications. Chances are that even a surplus laser will still have thousands of hours of life remaining.

    However, the shelf life of the tube depends on types of sealing method used in the attachment of the optics. There are two types of internal mirror HeNe tubes:

    A very few tubes apparently have frit at one end and a soft-seal at the other so check both ends. This probably applies only to some low gain "other color" HeNe lasers with a mirror that would be affected by even the relatively low temperature at which the frit melts.

    Note that other parts of most tubes (except for Brewster windows, if present) use glass-to-metal seals but since these must be manufactured at high temperature, they are not an option for delicate optics. The very best tubes with one or two Brewster windows do not use frit because even at the low temperature at which it is fired, there may still be some unavoidable stresses introduced - these tubes continued to be soft-sealed even after frit was common but now use optical contacted seals. With optical contacted seals, the two pieces are ground and polished optically flat and brought together under clean room conditions. The resulting seal is gas-tight. Just a bit of Epoxy is used for mechanical stability but it doesn't do the sealing.

    The HeNe gas doesn't 'wear out'. A HeNe tube, when properly connected has a substantial portion of its power dissipated by the bombardment of positive ions at the cathode (the big can electrode) which is made large to spread the effect and keep the temperature down and is "pickled" (coated) to reduce its work function. Hook a tube up backwards and you may damage it in short order and excessive current (operating current as well as initial starting current from some high compliance power supplies) can degrade performance after a while. Electrode material may sputter onto the adjacent mirrors (reducing optical output or preventing lasing entirely) or excessive heat dissipation may damage the electrodes or mirrors directly.

    As the tube is used (many thousands of hours or from abuse), operating and starting voltages may be affected as well - generally increasing with the ultimate result being that a stable discharge cannot be initiated or maintained with the original power supply. See the section: How Can I Tell if My Tube is Good?.

    (From: Lynn Strickland (stricks760@earthlink.net).)

    Typical failure mechanism in a HeNe is cathode sputtering -- seldom gas leakage in the newer (like since 1983) tubes. Shelf life is stated to be about 10 years, but it's not uncommon at all to see HeNe lasers built in the early 1980's that still meet full spec.

    Interesting lifetime note - it used to be that you left a HeNe 'on' at all times to prolong life. Since hard-sealing, you should turn it off while not in use. If it's a 20,000 hour tube, and you only turn it on for a few hundred hours a year, it will last a heck of a long time. Not uncommon at all for the HeNe to outlive several power supplies. The larger diameter tubes tend to last longer, but it also depends on fill pressure and operating current (higher fill-pressure tubes last longer). The typical 5 mW red HeNe will commonly live to 40k to 50k operating hours.

    As for cathode sputtering, the tube has an aluminum cathode that is 'pickled' during the production process to add a layer of oxidation about 200 microns thick. The oxidation layer prevents aluminum from being bombarded away from the cathode during plasma discharge. As the tube ages, the oxide layer is depleted until aluminum is exposed. Sputtered aluminum can stick to the mirror, causing power decline, or to the inside of the glass envelope, causing the discharge to arc internally. This arcing, if allowed to continue for a period of time, will also cook the power supply. A tube with no oxidation layer on the cathode will die in about 200 hours of use. OR, once the oxidation layer is depleted, the tube will die in about 200 hours. This is why a HeNe life curve is usually pretty flat, then quickly degrading to nothing over about a 200 hour period.

    An Older HeNe Laser Tube

    The Spectra-Physics Model 084-1 HeNe Laser Tube was popular for applications like barcode scanners. It is rated at 2 to 3 mW when new. While the main glass tube and end-plates use glass-to-metal (hard) seals, the mirrors appear to be Epoxied in place (soft sealed). Thus, one would expect these tubes to leak over time. However, out of 31 that I have tested, 20 appear to be nearly as good as new showing only slight leakage which their getters have taken care of nicely and no detectable reduction in power output. (Of the others, 7 had weak or no output but most could be at least partially revived - see the section: Attempting to Revive Some Soft-Seal HeNe Tubes. The remainder were totally dead.)

    As is typical of Spectra-Physics internal mirror HeNe tubes, these have thick glass walls (at least compared to tubes from most other manufacturers). For the barcode scanner application (at least) there was an outer wrap (removable) of several layers of thick aluminum foil, apparently for thermal stabilization but it would also reduce electrical noise emissions and light spill from the discharge. (The foil wrap also seems to be common with more modern Spectra-Physics HeNe barcode scanner tubes when not installed in cylindrical laser heads.) A 100K ohm ballast resistor stack in heat shrink tubing was attached with a clip and RTV Silicone to the anode end-plate stud, and both ends were capped with rubber covers for protection (of the tube and user).

    The SP-084-1 is about 9-1/2" (241 mm) by 1" (25.4 mm) in diameter with a bore length of 5.5" (140 mm). Its output is a TEM00 beam about 0.8 mm in diameter exiting through a hole in the cover on the cathode-end of the tube. Power supply connections are made to a stud on the anode end-plate and the exhaust tube on the cathode end-plate. Their optimal operating point is around a tube current of 5 mA resulting in a total operating voltage (across tube + Rb) of about 1.9 to 2.0 kV using the 100K ballast.

    Note from the diagram that unlike modern tubes where the mirrors are on mounts that can be adjusted (by bending) after manufacturer, alignment of the SP-084-1 would appear to be totally fixed. Some possible ways of setting alignment might be:

    1. The mirrors were just glued in place expecting alignment to be adequate (but the end-plates do not appear to be specially machined).

    2. The mirrors were aligned at installation using external optics but before the tube had been pumped down and filled with helium and neon.

    3. The manufacturing process provided a means of adjusting the mirrors after filling but before the glue had fully set or by softening it with heat.

    4. There was some means of distorting the end-plates (but this doesn't seem likely given their thickness).

    From appearances, I would guess (2). Since the mirrors are slightly curved (non-planar), their position could be used to adjust alignment slightly - and some were attached very visibly off-center to compensate for end-plates fused to the glass tube at a slight angle.

    HeNe Laser Pointers

    While modern laser pointers fit comfortably on a keychain and can be had for $1 or less if you know where to look, the first laser pointers were, well, HUGE and at least several hundred dollars. :) One of the earliest laser pointers using a HeNe laser tube I've seen (dating from the late 1970s) was about 12 inches long by 1-3/4" in diameter (just like a common HeNe laser head). The name on it is Bergen Expo Systems, Inc. and it is a model LP6-227 should want to order one. :) The date of manufacture was 1978. This pointer was tethered via a six foot cord to a separate high voltage power unit. The beam on/off button on the side not surprisingly didn't control the power supply but rather moved a sliding shutter. The actual manufacturer was probably Spectra-Physics as the tube inside was a SP-084 (a common barcode scanner type) and it has the funny 3 pin power supply connector mainly used by Spectra-Physics. I don't have the power supply so can't say what it looked like.

    More recent HeNe laser-based laser pointers became more compact and some ran off a bunch of AA or 9 V batteries. But they never achieved keychain status, unless they were keys for elephants. :)

    It is still possible to buy a HeNe laser in a compact package. The Metrologic model 811 (red, $399) or 815 (green, $719) is not much over 1" x 2" x 7" and houses a 5 or 6 inch HeNe laser tube with HV power supply built-in. However, this is still tethered to a DC wall adapter, though a bettery box option might be available. There's not much demand for these as pointers anymore but they are still cute. :)

    HeNe Lasers using External Mirrors

    While most of what you will likely come across are the common internal mirror HeNe tube, having the optics external to the tube is essential for some applications.

    A One-Brewster HeNe Laser Tube

    I was given a CLIMET 9048 HeNe laser head which contains a Melles Griot HeNe tube with a normal HR mirror at one end but with a frit-sealed Brewster window instead of an OC mirror at the other end. In this case, it is the cathode-end which is nice since there is no high voltage to deal with near the Brewster window. But identical tubes also come with the Brewster window at the anode-end but why anyone would want this excapes me. :) (And, several other models of one-Brewster tubes are common - see the section: Melles Griot Brewster and Zero Degree Window HeNe Tubes.)

    The tube is a Melles Griot model 05-LHB-570. It has an internal HR mirror and Brewster window at the other end of the tube. The HR is similar to those on other Melles Griot tubes (including the use of a locking collar) though the somewhat more silvery appearance of its surface may indicate that it is coated for broadband reflectivity and/or perhaps for higher reflectivity than ordinary HRs. (The mirror reflectivity of the HR on at least some versions of the 05-LHB-570 is greater than 99.9% from 590 to 680 nm but I don't think this one, which is quite old, has these characteristics.) The total length is about 265 mm (10.5 inches) from the HR mirror to the Brewster window. There is also a power sensor inside the head for (I assume) monitoring what gets through the HR mirror (untested).

    CLIMET 9048 One-Brewster HeNe Laser Head shows the aluminum cylinder with its mounting flange at the Brewster window end, ballast resistor, and Alden connector. The other black wire attaches to the solar cell power sensor.

    These one-Brewster HeNe tubes are generally used in applications like particle counting which requires high photon flux to detect specks of dust or whatever. Access to the inside of the resonator is ideal since with appropriate highly reflective mirrors at both ends, several WATTs of "virtual" circulating power can be produced inside the cavity of this HeNe laser. Thus, for these applications, they have the benefits of a high power laser without the cost or safety issues. There are even HeNe tubes similar to this that will do up to 45 W using super high quality mirrors and Brewster window. And, of course, they are also super expensive. Of course, you can't siphon off all that power - only be extremely envious and frustrated that it is trapped in there - but also safe from any sneak attacks on an unsuspecting eyeball. :)

    A rig similar to the one from which the Climet 9048 was removed is a model 8654, whatever that means. It is shown in Climet Particle Counter Assembly - Front and Climet Particle Counter Assembly - Rear. There really isn't much inside - just some passages for the particle-containing gas which is directed to through the intracavity beam at one focus of a large aspheric lens which directs any scattered light onto a PhotoMultiplier Tube (PMT). The PMT is inside the black box at the lower left with its high voltage power supply above in the front view. The three-screw (sort of) adjustable mount for the external HR mirror is visible in the rear view. What's interesting is that there is really nothing physical to protect either the B-window or mirror from contamination by the flowing gas, except presumably by the flow pattern and pressure. There are separate compartments for the B-window and mirror, but they aren't sealed. However, it appears that during operation, those compartments are provided with a flow of higher pressure gas, filtered by the large canister visible in the photos. But, how they are expected to remain clean when the thing is shut down is a mystery. It is a particle counter after all. Aren't particles basically dust? :) OK, well, part of the secret is that apparently these things are intended to be looking at really clean air without many particles. A typical use would be in a semiconductor Fab Class 10 cleanroom - 10 or fewer particles (2 microns or larger) per cubic foot. This isn't your normal room air, which would be Class 10000 to Class 100000! :) Even so, the recommended service interval printed on the label is only 6 months.

    With its wide bore, this tube has an optimal operating point (maximum power) of about 7.5 to 8 mA at about 1 kV (though the recommended current is actually 6.5 mA). This may just be a peculiarity of the sample I tested.

    I have constructed a simple mirror mount so that various mirrors could be easily installed and there is easy access to the inside of the cavity. See HeNe Laser Tube with Internal HR and Brewster Window with External OC for a diagram showing this laser assembly. Using various mirrors, both from deceased HeNe lasers as well as from laser printers and barcode scanners, output power reached more than 3 mW and the circulating power inside the resonator peaked at over 1 W (but not with the same mirrors). With optimum high quality mirrors, it should be capable of more power in both areas. Photos of this laser are shown in Sam's External Mirror Laser Using One-Brewster HeNe Laser Head.

    See the section: Sam's Instant External Mirror Laser Using a One-Brewster HeNe Tube for details on these experiments and the design of the mirror mount.

    I have attempted to get wavelengths other than boring 632.8 nm red out of this and similar 1-B tubes. However, all attempts have failed but one - installing a somewhat larger 05-LHB-670 in place of the dead tube of a PMS/REO tunable HeNe laser. (This 1-B tube did 7.5 mW with the same OC mirror as used above. The 1-B tube in the Climet head probably woudn't have enough gain.) The HR mirror on the tuning prism is broadband coated for 543.5 to 632.8 nm. In this case, I was able to convince just a few 611.9 nm orange photons to cooperate and lase. However, the only way to collect them was from the reflections off the Brewster surfaces of the tube or prism, or from the HR mirror of the 1-B tube. The total orange power was around 225 microwatts - 50 uW from the HR mirror, 65 uW reflected from the Brewster prism, and 110 uW reflected from both surfaces of the tube's Brewster window. When 633 nm was selected, the output from the HR mirrors was about 350 uW (I didn't measure the red power from the Brewster reflections).

    Designing a Helium-Neon Laser Tube

    (From: Lynn Strickland (stricks760@earthlink.net).)

    H. Weichel and L.S. Pedrotti put out a good summary paper which includes the equations used in the design process of a gas laser. In particular, section V tells you how to calculate mode radius at any point, given mirror curvature, spacing and wavelength. If you know that, the aperture size (the capillary bore usually) and the magic number for the ratio between the two, you can design a TEM00 gas laser. Using a HeNe tube with a Brewster window, you could do some fun stuff with predicting aperture sizes and locations to force TEM00 operation.

    The paper was published by the Department of Physics, Air Force Institute of Technology, Wright-Patterson Airforce Base, OH. The title is "A Summary of Useful Laser Equations -- an LIA Report". Don't know where you'd find it, but the Laser Institute of America (LIA) might be a good start.



  • Back to Helium-Neon Lasers Sub-Table of Contents.

    Wavelengths, Beam Characteristics

    HeNe Laser Wavelengths

    While what comes to mind when there is mention of a HeNe laser is a red beam, those with other wavelengths are manufactured.

    Typical maximum output available from (relatively) small HeNe tubes (400 to 500 mm length) for various colors: red - 10 mW, orange - 3 mW, yellow - 2 mW, green - 1.5 mW, IR - 1 mW. Higher power red HeNe tubes (up to 35 mW or more and over 1 meter long) and 'other-color' HeNe tubes (much lower - under 10 mW) are also available. However, these will be very large and very expensive.

    Tunable HeNe Lasers

    If it were possible to select any available wavelength desired, then some people would be content beyond description. :)

    A few tunable HeNe lasers have been produced commercially. These provide wavelength (color) selection with the turn of a knob. However, due to the low gain of most HeNe lasing lines, producing a useful tunable HeNe laser is not an easy task. Everything must be just about perfect to get the "other color" lines to lase at all, and even more so when a laser is to be designed to work at more than one wavelength with a TEM00 beam. The most widely known such laser (as these things go) is manufactured by Research Electro-Optics, Inc. (REO). It produces at least 5 of the visible wavelengths: normal red, two oranges, yellow, and green. A Littrow (or Brewster) prism with micrometer screw adjusters takes the place of the HR mirror in a normal HeNe laser. See the section: Research Electro-Optics Tunable HeNe Lasers.

    There used to be a model ML-500 tunable HeNe laser from Spindler and Hoyer that did *14* lines between 611 nm and 1,523 nm. So no 604 nm orange, 594.1 nm yellow, 543.5 nm green, or 3.39 um IR. The mirror set has to be changed to go between the visible and IR wavelengths. It used a Birefringent Filter (BRF) for wavelength selection instead of the Littrow prism in the REO tunable laser. A BRF has the advantage that there is no loss from a slightly incorrect Brewster angle for all but one wavelength, unavoidable with a Littrow prism. This is because the BRF is always set at exactly the Brewster angle. The birefringent crystal in the BRF filter produces a different optical delay for polarization components oriented in the direction of its slow and fast axes. Only when this difference is a multiple of a full cycle for any given wavelength, will the polarization be unchanged and thus result in minimal loss through the BRF. By rotating the BRF around its optical axis (still maintaining it at the Brewster angle to the laser's optical axis), the wavelength where minimum loss occurs can be selected. In 1987, it was only $5800 for laser with either wavelength range, an additional $750 for the other mirror set

    I don't know why Spindler and Hoyer would have admitted defeat in not including those other wavelengths as they were certainly known at the time. Perhaps, the losses through the two Brewster windows of their laser tube and the Brewster angled plate of the BRF compared to those of the Brewster window and Brewster prism of the PMS/REO tunable laser were just too high. Perhaps, their mirror coating technology was not as good as what PMS/REO had available.

    Unfortunately, Spindler and Hoyer no longer makes this laser, only boring normal HeNe lasers and other optical equipment. However, a scan of the original ML-500 product brochure can be found at Vintage Lasers and Accessories. With modern technology, a 17 line tunable HeNe laser should be possible. :) A tube with internal mirrors and a BRF *inside* would reduce the number of Brewster angle reflective surfaces to only 2, compared to the 3 of the PMS/REO design. A magnetic coupling can be used to move the BRF from outside the tube. In addition, the mirrors can be recessed away from the ends of the tube so they don't experience any high temperatures during the sealing process. The tube itself would be hard-sealed with frit or regular glass. Then optical contacting or leaky Epoxy seals can be avoided. Use a Brewster angle window to pass the laser beam out of the tube. One of the mirror mounts would be attached via a metal bellows to allow for alignment.

    Exact Frequency/Wavelength of HeNe Lasers

    There is, of course, no single precise HeNe wavelength since any given cavity will only oscillate at the permitted longitudinal modes and the gain curve is something like 1.5 GHz wide. Thus, for a common HeNe laser, there is no single wavelength and those that are present drift over time (mostly due to thermal expansion of the cavity). A single mode frequency stabilized HeNe laser will have very nearly a constant single wavelength precise to 9 or more significant figures but it too will depend on the physical size of the laser's cavity - there is no one correct answer!

    For example, one typical stabilized HeNe laser from Hewlett-Packard, has a precise vacuum wavelength of 632.991372 nm. Another one from Melles Griot (as noted below) is 632.991058 nm in vacuum or 632.81644 nm in air (divide by the index of refraction of air, n=1.00027593).

    (Portions from: Jens Decker (Jens.Decker@chemie.uni-regensburg.de).)

    The Melles Griot catalog claims a nominal frequency of 473.61254 THz for their 05-STP series of frequency stabilized lasers. (Elsewhere in the same catalog they are more precise and lists 473.612535 THz for the 632.8 nm line.) Anyhow, with c = 2.997925E8 m/s this gives 632.991058 nm in vacuum or 632.81644 nm in air for n = 1.00027593 (formula from J Phys.E, vol. 18, 1985, pp. 845ff). To find reliable values for all the other HeNe lines is quite difficult. One has to compare a number of books to be sure whether the values are for air or vacuum.

    (From: D. A. Van Baak (dvanbaak@calvin.edu).)

    Well, here it is exact:

    The metrologists' answer for a 632.8 nm HeNe laser stabilized to the a-13 component of the R(127) line of the 11-5 transition of the 127-Iodine dimer molecule is:

    under certain specified conditions, with uncertainty 2.5x10-11. See: "Metrologia", vol. 30., pp. 523-541, 1993-1994.

    HeNe Laser Beam Characteristics

    Compared to a diode laser, the beam from even an inexpensive mass produced HeNe tube is of very high optical quality:

    Ghost Beams From HeNe Laser Tubes

    If you project the output from some HeNe laser tubes (as well as other lasers) onto a white screen a meter or so away, you may see a main beam and a weak beam off to the side a few cm away from it. Maybe even another still weaker one after that.

    Most internal mirror HeNe tubes should not have any higher order transverse (non-TEM00) modes. And, for multimode tubes, such modes should show up as part of, or adjacent to the main beam anyhow.

    One possible cause for this artifact is that the output-end mirror (Output Coupler or OC) has some 'wedge' (the two surfaces are not quite parallel) built in to move any reflections - unavoidable even from Anti-Reflection (AR) coated optics - off to the side and out of harm's way. Where wedge is present, the small portion of the light that returns from the outer AR coated surface of the OC will bounce back to the mirror itself and out again at a slight angle away from the main beam. In a dark room there may even be additional spots visible but each one will be progressively much much dimmer than its neighbor. Note that if the laser had a proper output aperture (hole), it would probably block the ghost beams and thus you wouldn't even know of their existence!

    Without wedge, these ghost beams would be co-linear with the main beam (exit in the same direction) and thus could not easily be removed or blocked. This could result in unpredictable interference effects since the ghost beams have an undetermined (and possibly varying) phase relationship with respect to the main beam. Sort of an unwanted built-in interferometer! The wedge also prevents unwanted reflections from that same AR coated front surface back into the resonator - perfectly aligned with the tube axis - which could result in lasing instability including cyclic variations in output power.

    Thus, the ghost beam off to one side is likely a feature, not a problem! The effects of wedge on both the output beam and a beam reflected from a mirror with wedge is illustrated in Effects of Wedge on Ghost Beams and Normal Reflections. Note that his diagrams shows the effect of a beam coming in from the right and reflecting off the mirror. Where the beam is from the tube itself, the main beam corresponds to the one marked "1st Back Surface".

    If it isn't obvious from close examination of the output mirror itself that the surfaces are not parallel, shine a reasonably well collimated laser beam (e.g., another HeNe laser or laser pointer) off of it at a slight angle onto a white screen. There will be a pair of reflected beams - a bright one from the inner mirror and a dim one from the outer surface. As above, if the separation of the resulting spots increases as the screen is moved away, wedge is confirmed (there may be higher order reflections as well but they will be VERY weak - see below). Where the mirror is curved, the patterns will be different but the wedge will still result in a line of spots at an angle dependent on the orientation of the tube.

    Wedge is often present on the other mirror (High Reflector or HR) as well (in fact, this appears to be more likely than the OC). Wedge at the HR-end won't affect the output beam at all but performing the reflectance test using a collimated laser (as above) at a near-normal angle of incidence may result in the following:

    With the exaggerated amount (angle) of wedge in Effects of Wedge on Ghost Beams and Normal Reflections, another effect becomes evident: The weaker spots are spaced further apart. It is left as an exercise for the student to determine what happens when a laser beam is reflected at an angle from such a mirror! Note that his diagrams shows the effect of a beam coming in from the right and reflecting off the mirror. Where the beam is from the tube itself, the main beam corresponds to the one marked "1st Back Surface".

    The appearance resembles that of a diffraction grating on such a beam (but for entirely different reasons). The behavior will be similar for an OC with wedge but because the HR mirror isn't AR coated, the higher order spots (from the HR) are much more intense.

    It is conceivable that slight misalignment of the mirrors may result in similar ghost beams but this is a less likely cause than the built-in wedge 'feature'. However, if you won't sleep at night until you are sure, try applying the very slightest force (a few ounces) to the mirror mounts (the metal, not the mirrors as they are very fragile) in each while the tube is powered (WARNING: High Voltage - Use a well insulated stick!!!!).

    Depending on the type of laser you have, see the sections: Checking and Correcting Mirror Alignment of Internal Mirror Laser Tubes, Quick Course in Large Frame HeNe Laser Mirror Alignment, and External Mirror Laser Cleaning and Alignment Techniques, for more information.

    Another much simpler cause of an ugly beam from a HeNe (or other) laser is dirt on the outside of the output mirror since this will decrease the effectiveness of the AR coating. The dirt may also be on other external optics. Some HeNe laser heads have either a debris blocking glass plate glued at an angle to the end-cap or a neutral density filter to adjust output power. Even if AR coated, either of these may also introduce one or more ghost beams and if not perfectly clean, other scatter as well. I'm gotten supposedly bad HeNe lasers where the only problem was dirt on either the output mirror or external plate or filter.

    (From: Steve Roberts (osteven@akrobiz.com).)

    The mirror is wedged to cut down on the number of ghost beams, however even with a wedged mirror there is almost always one ghost. Nothing is wrong with your coatings on the mirror, it is simply a alignment matter. The mirrors need to be "walked" into the right position relative to the bore. There are many many paths down the bore that will lase, but only a few have the TEM00 beam and the most brightness, this generally corresponds to the one with minimum ghosts.

    See the section: Quick Course in Large Frame HeNe Laser Mirror Alignment for more information.

    Getting Other Lasing Wavelengths from Internal Mirror HeNe Laser Tubes

    As a practical matter, the only wavelength that is useful from an internal mirror HeNe laser is the one for which it was designed. (Or the pair in the case of a couple of Research Electro-Optics (REO) lasers.) However, it is often possible to at least obtain unstable lasing at other wavelengths by extending the cavity using an external mirror. The output power of the other lines can be anywhere from almost non-existent to greater than the power at the original wavelength. This probably works best obtaining a some red from a long "hot" yellow (594.1 nm) or orange (611 nm) tube since at least one mirror is likely coated broadband to include yellow through red. Due to the low gain of the non-red lines, going the other way - getting yellow from a red tube, for example - is not likely to succeed unless the tube is very long. But obtaining lasing at other red wavelengths - and even orange - may be possible with a moderate size red HeNe laser tube. Even a 1 mW tube may give you 1 or 2 other red lines. I doubt it will work at all with a green HeNe tube having mirrors that appear orange in transmission since both mirrors are probably too transparent at even the yellow wavelength (except possibly if two external mirrors are used). However, if a mirror is more red in transmission, there might be a chance. See the section: Instant HeNe Laser Theory for a table of HeNe lasing wavelengths and relative gains.

    I've gotten most of the well known HeNe lasing lines in this manner including up to 4 mW of red from a 2 mW yellow HeNe laser, both orange lines, various other red lines, and one of the wavelengths that isn't even mentioned in most texts dealing with HeNe lasers. More below. What I don't believe I've seen so far is any yellow from non-yellow tubes and I haven't even attempted to obtain green from non-green tubes.

    Here's how to get other wavelengths from your HeNe laser. Either a bare tube or complete laser head can be used for these experiments.

    Using my Melles Griot 05-LYR-170 yellow HeNe tube which for my "broken" sample, actually lases a combination of yellow (594.1 nm) and orange (604.6 nm) from both ends (see the section: The Dual Color Yellow/Orange HeNe Laser Tube), it was quite easy to achieve red output, and all three colors were occasionally present at the same time - an impressive achievement for a HeNe laser. My setup is shown in 05-LYR-170 HeNe Laser Tube Mounted in Test Fixture for Multiline Experiments. The output from the tube's OC was directed at an AOL CD used as a reflective diffraction grating with the first-order beam projected on a white card several feet away. An MSN CD would work just as well :) but a CD-R or CD-RW may not. The lens from a pair of eyeglasses (mildly positive, about 4 diopters or 1/4 meter focal length) narrowed the spots to improve spectral resolution. This rig could easily resolve lines separated by less than 1 nm. The first external "red" mirrors I tried were from an SP-084 HeNe laser tube but due probably to their relatively short RoC, the 05-LYR-170 had to be pushed quite close to the mount to get any red output. Mirrors designed for a longer laser worked better but there wasn't much difference between the behavior using an HR or OC (99 percent).

    Then to add to the excitement, with a bit of twiddling, I was able to obtain the other orange line (611.9 nm) as well, and at times, all 4 lines were lasing simultaneously! As expected, this additional line was only present when using an external HR. Depending on the original makeup of the yellow and orange beam (for this tube, their absolute and relative intensities varied with time and were also a very sensitive function of mirror alignment), it was possible to get mostly red or to vary the intensities of the other colors, most easily suppressing yellow in favor of orange and red. The intensity of the red output was never more than 1 mW or so. Its transverse mode structure varied from TEM00 to a star pattern with nothing in the center. Strange. Due to both surfaces of the HeNe tube's HR mirror reflecting some of the intracavity beam resulting in a multiple cavity interference effect, there was a distinct lack of stability. To help compensate for this, a micrometer screw to precisely adjust cavity length without affecting mirror alignment would have been nice.

    I also tried this with the external mirror mounted beyond the tube's OC mirror but although there was a definite effect on yellow and orange lasing, it wasn't possible to obtain any red output. (For the 05-LYR-170, the OC already reflects red quite well and the HR doesn't.) Finally, I replaced the red external mirror with a green HR (from a tube of about the same length) mounted beyond the 05-LYR-170's OC (since its HR by appearance looked like it might be a good mirror for green). But, not surprisingly, while this could affect the lasing of the yellow and orange lines, I could detect no coherent green photons. However, I would expect that with a appropriately coated mirrors (or possibly two such mirrors, one beyond each end of the tube), obtaining lasing at the relatively high gain 640.1 nm red line would be easy - the usual "red" mirrors may deliberately kill this line to prevent it from lasing. Although I couldn't detect any evidence of lasing at the other red lines of 629.4 nm and 635.2 nm, these should also be possible with appropriate mirrors as they have higher gain than the yellow and oranges. Another interesting one would be the "Border Infra-Red" line at 730.5 nm. Lasing at the IR lines might also be possible but they are so boring. :)

    Next, determined to do something with a more normal HeNe laser tube, I tried a Siemens tube but that refused to do anything interesting. Then, I tried a Melles Griot 05-LHR-150 which typically outputs a 5+ mW red (632.8 nm) beam. Since the OC for this laser is probably around 99% reflective at most, peaking at 632.8 nm, I figured that it would be best to place the external mirror beyond the OC rather than the HR. And, with the same external HR as used above, it was possible to obtain 6 lasing lines, count'm 6: 629.4 nm, 632.8 nm, 635.2 nm, 640.1 nm, a line popping up around 650 nm (all variations on red), ****AND**** 611.9 nm orange! However, since the output is being taken from the HR, none of the colors was more than a fraction of a mW.

    Lasing of the 650 nm line was hard to obtain - it only showed up for a few seconds off-and-on every few minutes and increasingly rarely after the tube warmed up. The exact wavelength is very close to 650 nm (649.98 nm) as determined later with an Agilant 86140B Optical Spectrum Analyzer (OSA) which is a lot more expensive than my AOL CD. :) (The wavelength was referenced to the 632.8 line from the same laser resulting in a measurement error bound of +/- 0.02 nm assuming the 632.8 nm line is actually 632.8 nm. But since this could also be slightly shifted, the error may be higher.) Getting anything at 650 nm is really puzzling as there are no HeNe lasing lines between 640.1 nm and 730.5 nm. But I have no doubt it is a true lasing line since it was fluctuating independantly of the others (later confirmed, see below). And all those other lines were quite accurately located corresponding to their handbook wavelengths in the diffracted pattern (and later confirmed with the OSA). So there is little reason to suspect that the funny one isn't as well. When present, it appeared as strong (or weak) as all the expected ones, (except of course, the original 632.8 nm line which was usually, but not always, the strongest). If 650 nm is not a HeNe lasing line - it's certainly not in the sequence of energy level transitions that produce all the other visible HeNe lines - one possible explanation is that there is some trace element present inside the tube and that is what's lasing, not neon. I figured this to be a distinct possibility since the particular tube I am using originally had gas contamination and I revived it by heating the getter. (See the section: Repairing the Northern Lights Tube.) Therefore, the 650 nm wavelength may not be present with another more normal tube. But as it turned out, contamination has nothing to do with it.

    I don't think the 730.1 nm line was present but given its low relative perceived brightness, it may not have been visible at all using my AOL Special CD diffraction grating but I couldn't find it with the OSA either. It took awhile to detect the evidence of the 635.2 nm line which only appeared sporatically (but it is the lowest gain of all the known ones above).

    A few days later, I tried the same experiment with a couple of my old Spectra-Physics 084-1 HeNe laser tubes which are of soft-seal design so have almost certainly leaked over time (but still work fine). With my "hottest" SP084-1 (about 2.9 mW), I could almost duplicate the results of the 05-LHR-150 including the funny line around 650 nm but minus anything at 635.2 nm. Using a more normal 2.4 mW SP084-1, it was possible to obtain (non 632.8 nm) lines at 629.4 nm and 640.1 nm. For these, an SP084-1 HR worked almost as well for the external mirror as the longer RoC HR I had been using with the 05-LHR-150. I then installed a SP098-1, a common hard-seal barcode scanner tube (this sample puts out about 1.4 mW). With that, the only additional line was at 640.1 nm. Which particular lines appear in each case seem consistent with the length of the tubes (and thus the single pass gain) and the relative gain of the lasing lines.

    Some quick calculations predict that the real effect of the external HR mirrors is the obvious one - to increase the circulating power. A 1 percent OC (typical) followed by even a 90 percent external mirror would result in greater than a 99.9 percent effective mirror for a range of wavelengths/modes. An external 99.9 percent HR would result in an even better effective mirror. It looks like the reflectance peak is relatively broad with respect to wavelength (the transmission peak is rather narrow). Specific modes for each of the wavelengths will be enhanced or suppressed. This would also appear to be consistent with the apparent lack of need for the external mirror to result in a stable resonator. All it has to do is form a Fabry-Perot cavity.

    These have to be classified right up there in the really fascinating experiments department. Seeing any HeNe laser operating with multiple spectral lines is really neat.

    For more examples of these stunts using an already interesting "defective" HeNe laser, see the sections starting with: Melles Griot Yellow Laser Head With Variable Output and in particular, the section: External Mirror Therapy for Variable Power 05-LYR-171 Yellow Laser Head.

    As always, depending on mirror reflectivity and other factors, your mileage may vary. But feel free to try variations on these themes. The results from using an HeNe HR beyond the OC of almost any red HeNe laser tube should be easily replicated (except perhaps for the funny 650 nm line). Almost any mirror will do something since even an aluminized mirror will be returning over 90 percent of the otherwise wasted photons to the cavity - enough to boost the gain of all but the weakest lines enough for lasing if everything lines up just right. Aside from getting zapped by the high voltage or dropping the tube on the floor, they are low risk, high reward experiments.

    (From: Bob.)

    For neutral neon at low pressure, the lines 640.3 nm, 659.9 nm are listed. For neutral helium, there is one at 667.8 nm. None of the other noble gases have wavelengths listed this short. As far as ionized species go, singly ionized argon has a line at 648.30 nm. Singly ionized krypton has a hand full of lines from 647 nm to 657 nm. Finally, xenon has one at 652 nm.

    For atmospheric gases, there is a singly ionized nitrogen line at 648.3 nm. There are no neutral lines of interest for atmospheric gases. The footnotes for the above line were listed as CW lasing in 0.02 torr of krypton. Whats the standard operating pressure of a HeNe laser? Not THAT far out of the ball park I would guess.

    (From: Sam.)

    The last one sounds promising and would make sense given the history of the particular 05-LHR-150 and the soft-seal design of the SP084-1. Though HeNe lasers operate in the 2 to 3 TORR range - about 100 times higher pressure, the partial pressure of any N2 contamination could very well be down around 0.02 Torr.

    However, I now know exactly where the 650 nm line is coming from and it has nothing whatsoever to do with contamination. The exciting writeup from someone who beat me to this by about 15 years follows in the next section preceeded by a condensed version, below.

    I've also found a commercial laser that appears to produce a very stable 650 nm line. See the section: The PMS/REO External Resonator Particle Counter HeNe Laser.

    (From: Stephen Swartz (sds@world.std.com).)

    Lasing of certain HeNe tubes at 650 nm is a known phenomenon and not just a hallucination. The 650 nm line which is never discussed in most standard texts is not due to a "normal" transition of neon. It comes instead from a Raman transition. The 650 nm line is not often observed but when it is it will always be seen simultaneously with operation on a multitude of other lines. A large number of other "unusual" colors have been seen over the years. Higher power tubes with mirrors that are excessively broadband are your best bet for observing them. Often these lines flicker on and off over a few seconds to minutes time scale. A diffraction grating is a good way to look for them.

    (From: Someone at a major laser company.)

    The 650.0 nm Raman line is a known problem in that it competes for power with the 632.8 nm line intermittently, particularly in long tubes with high circulating power. Polarized tubes are much less susceptible to this effect and using a lower reflectance for the OC mirror helps since it reduces circulating power without affecting output very much (over a reasonable range).

    Bruce's Notes on Getting Other Lines from Red (633 nm) HeNe Laser Tubes

    This, to make a gross understatement, would appear to be the definitive word on coaxing other colors from surplus HeNe laser tubes. And I thought six lines (including the mysterious 650 nm line) was an achievement. :)

    (From: Bruce Tiemann (BruceT@ctilidar.com).)

    I have gotten many lines from many different HeNe lasers. In my experience almost every tube is capable of giving at least one other line than 633 nm. (Most wavelengths have been rounded to save bits. So, 632.8 nm becomes 633 nm.) I have never tried doing this with lasers that give other lines than 633 nm, but since that line has the highest gain, it should be no mean feat to at least get that line from lasers that are supposed to not give it. It is also not my experience that calculations to ensure resonator stability, etc., are necessary. Just try it! My best results, in terms of output power, were with a flat grating as the external feedback mirror, and my best results in terms of new lines was obtained with a flat dielectric mirror, formerly used as a facet in a polygonal scanning assembly. Flat mirrors are not stable at any separation for a diverging beam, and HeNe lasers are very rare that give converging beams for their output.

    The home stuff had the mirrors on blocks, with the steering accomplished by adjusting the HeNe tube by lifting one or the other end of the tube with sheets of paper, and the azimuth by moving the laser tube back and forth. The lab experiments were done with "real" mirror mounts, supplemented by a single PZT that tilted the feedback mirror a few microns.

    (I like PZTs a great deal, and would like to observe that you can get PZT elements from little piezo alarms, from which the useful element can be extracted with some hand-tools and the mind-set of a 9-year-old kid dissecting a bug. :) These are only about $1 each, as opposed to tens to hundreds of bucks for "real" PZTs that you buy from Thor, etc. One of them and a 0 to 50 VDC power supply can precision-wiggle a mirror on the micron scale, which is all that is needed for these experiments.)

    (From: Sam.)

    I have indeed done something similar using the piezo beeper from a dead digital watch to move a mirror in a HeNe laser based Michelson interferometer. With 0 to 25 V, it went through 4+ fringes which means over 2 full wavelengths at 633 nm. The configuration in these is called a "drum head" piezo element because the movement resembles that of a musical (depending on your point of view!) drum head with the most shift in the center. The piezo material itself doesn't change by very much in thickness but is constructed so it distorts to produce the shape change. With care, the piezo material can be cut to size or drilled to pass light through its center. Much more voltage could have been safely applied if needed.

    (From: Bruce.)

    Something I also did is cast the spots from a smaller (approximately 3/4 m) spectrometer directly onto the CCD element of a small camera with no lens. I also fabricated a beam block by taping little wires to the side of a block, that would protrude up just in the locations of the very bright lines, like 633, 650, and 612 nm, to block them, but letting light of other colors pass in the ample space between the wires. You could still see when the bright lines were on from light leaking around the wires, but it wouldn't wash out the image when they were.

    In this case, when the feedback mirror was tilted, speckle, which was cast everywhere, would kind of shift around all over the place, but the new lines looked like ghostly bullseyes, which would breathe in and out as the mirror was tilted, but remain in the same location unlike the speckle. This was an easy way to see the weakest lines like 624 nm, and it was also how I discovered 668 nm, the CCD being more sensitive than the eye in the deep red. (I searched for but did not find the normal laser line 730 nm even with this very sensitive method.)

    All in all this laser produced 17 different lines, many at one time, from a "single line" 633 swap-meet laser. :)

    References:

    The 650 nm discovery paper is:

    Later, in 1989, a Chinese group that doesn't read Applied Physics Letters published:

    The first one, at least, should be available from a university library.

    Other Spectral Lines in HeNe Laser Output

    While there is no such thing as a truly monochromatic source - laser or otherwise, the actual output beam of even an inexpensive HeNe laser is really quite good in this regard with a spectral line width of less than 1/500th of a nm. For a frequency stabilized HeNe laser, it can be 1,000 times narrower!

    But if you look at the output of a HeNe laser with a spectrometer, there will be dozens of wavelengths present other than one around 632.8 nm (or whatever is appropriate for your laser if not a red one). Close to the output aperture, there will be a very obvious diffuse glow (blue-ish for the red laser) visible surrounding the actual beam. So why isn't the HeNe laser monochromatic as expected?

    With one exception, this is just due to the bore light - the spill from the discharge which makes it through the Output Coupler (OC) mirror. As your detector is moved farther from the output aperture, the glow spreads much faster than the actual laser beam and its intensity contribution relative to the actual beam goes down quickly. It is not coherent light but what would be present in any low pressure gas discharge tube filled with helium and neon. However, the presence of these lines can be confusing when they show up on a spectral printout.

    The exception is that with a 'hot' (unusually high gain) tube or one with an OC that is not sufficiently narrow-band, one (though probably not more though not impossible) of the neighboring HeNe laser lines (e.g., for other color HeNe lasers) may be lasing though probably much more weakly than the primary line. For example, a red (632.8 nm) laser might also produce a small amount of output at 629.4 or 640.1 nm though this isn't that common. I have one 'defective' yellow (594.1 nm) HeNe tube that also produces a fair amount of orange (604.6 nm), and another that produces in addition some of the other orange line (611.9 nm).

    (From: Prof Harvey Rutt (h.rutt@ecs.soton.ac.uk).)

    For gas lasers the plasma lines are typically 80 dB or more below the output (measured, of course, within the very small laser mode divergence). This is unlike most semiconductor lasers, which typically have broad 'shoulders' close in to the line, as well as 'lines' due to other modes and instabilities because the initial divergence of the diode is high, and spontaneous emission from the junction high, the broad background tends to be large.

    For gas lasers it is usually in the form of narrow lines at remote wavelengths, very easily removed with an interference filter and/or spatial filtering in the *rare* cases where it matters. There is presumably a weak broad background from processes involving free electrons (bound/free and free/free), but I've never seen it even mentioned, let alone observed it. More likely to be significant in the high current density argon laser than the very low current density HeNe.

    The only cases I have seen where the plasma lines caused problems were Raman measurements on scattering samples with photon counting detection, and weak fluorescence measurements which are similar.

    In most cases scattered light in the monochromator is much more of an issue (hence double monochromators for Raman) and will obscure plasma lines in many cases.

    About the Waste Beam from a HeNe Laser

    The so-called High Reflector (HR) or totally reflecting mirror in a HeNe laser isn't really perfect, though the actual reflectivity is generally 99.95 percent or better. For a 1 mW laser tube with a 99 percent Output Coupler (OC) mirror, there is about 100 mW of intracavity power. Of this, about 50 uW will exit the rear through a 99.95 percent HR mirror. Unless the back of the HR mirror is painted or covered, there is always some small beam exiting the rear of the laser.

    Normally, what comes out in that direction is, well, waste, and is of no consequence. But, there are times where it's convenient to use this low power beam as a reference, expecting its power to track that of the main output beam. Unfortunately, it is sometimes not well behaved in this regard.

    In constructing some amplitude stabilized HeNe lasers which depend on the waste beam feeding a photodiode for their feedback loop, an annoying characteristic of the waste beam has become evident with some otherwise perfectly normal and healthy HeNe laser tubes. Namely, that the relative power in the waste beam and the main beam does not remain constant as the tube warms up. In fact, one tube I was using had a variation of almost 2:1 in relative waste beam and output beam power depending on the tube's temperature. This is probably due to one or both of the following:

    1. Variation in mirror reflectivity. Designing and manufacturing high reflectivity mirror coatings is somewhat of an art and they don't always come out right. There may be ripples, a slope, or other variations in the reflectivity-versus-wavelength function. For an HR mirror on a 1 mW tube of, say, 99.97 percent resulting in 30 uW, a change of only 0.01 percent would add 10 uW to the waste beam.

    2. Lack of wedge or insufficient wedge between the inner and outer surfaces of the HR mirror. This will result in an etalon effect, effectively modulating the reflectance as a periodic function of temperature by perhaps 10 or 20 percent, which would appear as a similar change in the waste beam power. From room temperature to the operating temperature of a typical enclosed HeNe laser head, the power variation would go through several cycles.

    The coating problem is more likely to result in a strictly increasing, or at least slow change in waste beam power with higher temperature while the etalon would be periodic with temperature going through several cycles, it might be possible to determine which of the two effects is present.

    Normally, the waste beam is, well, waste and so no one cares. Though there will also be a change in the power of the output beam (inversely relative to the waste beam), it will be too small to be detectable without careful measurements, being swamped by the normal mode sweep power variations. But when the waste beam is used as the amplitude reference in a stabilized laser, the supposedly stabilized output will vary based on the relative waste beam power. That 10 uW change would result in the output power changing by 33 percent.



  • Back to Helium-Neon Lasers Sub-Table of Contents.

    Magnets in High Power or Precision HeNe Laser Heads

    Effects of Magnetic Fields on HeNe Laser Operation

    If you open the case on a higher power (and longer) HeNe laser head or one that is designed with an emphasis on precision and stability, you may find a series of magnets or electromagnetic coils in various locations in close proximity to the HeNe tube. They may be distributed along its length or bunched at one end; with alternating or opposing N and S poles, or a coaxial arrangement; and of various sizes, styles, and strengths.

    Magnets may be incorporated in HeNe lasers for several reasons including the suppression of IR spectral lines to improve efficiency (such as it is!) and to boost power at visible wavelengths, for the stabilization of the beam, and to control its polarization. There are no doubt other uses as well.

    The basic mechanism for the interaction of emitted light and magnetic fields is something called the 'Zeeman Effect' or 'Zeeman Splitting'. The following brief description is from the "CRC Handbook of Chemistry and Physics":

    "The splitting of a spectrum line into several symmetrically disposed components, which occurs when the source of light is placed in a strong magnetic field. The components are polarized, the directions of polarization and the appearance of the effect depending on the direction from which the source is viewed relative to the lines of force."

    Magnet fields may affect the behavior of HeNe tubes in several ways:

    In principle, varying fields from electromagnets could be used for intensity, polarization, and frequency modulation. I do not know whether any are implemented in this manner.

    Typical Magnet Configurations

    Here are examples of some of the common arrangements of magnets that you may come across. In addition to those shown, magnets may be present along only one side of the tube (probably underneath and partially hidden) or in some other peculiar locations. I suspect that for many commercial HeNe lasers, the exact shape, strength, number, position, orientation, and distribution of the magnets was largely determined experimentally. In other words, some poor engineer was given a bare HeNe tube, a pile of assorted magnets, a roll of duct tape, and a lump of modeling clay, and asked to optimize some aspect(s) of the laser's output. :-)

    (In all of these diagrams, the orientation of the Brewster windows shown is totally arbitrary - for sealed HeNe tubes with internal mirrors, they would not be present at all!)

    For the magnet configuration used in a commercial laser, see the section: Description of the SP-124 Laser Head.



  • Back to Helium-Neon Lasers Sub-Table of Contents.

    Internal Mirror HeNe Tubes up to 35 mW - Red and Other Colors

    Typical HeNe Tube Specifications

    Prior to the introduction of the CD player, the red HeNe laser was by far the most common source of inexpensive coherent light on the planet. The following are some typical physical specifications for a variety of red (632.8 nm) HeNe tubes (all are single transverse mode - TEM00):

       Output     Tube Voltage       Tube         Supply Voltage     Tube Size
       Power      Operate/Start     Current        (75K ballast)    Diam/Length
     ----------  ---------------  ------------   ----------------  -------------
      .3-.5 mW     .8-1.0/6  kV    3.0-4.0 mA       1.0-1.2 kV       19/135 mm
      .5-1 mW      .9-1.0/7  kV    3.2-4.5 mA       1.1-1.3 kV       25/150 mm
       1-2 mW     1.0-1.4/8  kV    4.0-5.0 mA       1.2-1.8 kV       30/200 mm
       2-3 mW     1.1-1.6/8  kV    4.0-6.5 mA       1.4-2.0 kV       30/260 mm
       3-5 mW     1.7-1.9/10 kV    4.5-6.5 mA       2.1-2.4 kV       37/350 mm
    

    Where:

    At least one other basic specification may be critical to your application: Which end of the tube the beam exits! There is no real preference from a manufacturing point of view for red HeNe lasers. (For low gain "other-color" HeNe laser tubes, it turns out that anode output results is slightly higher gain and thus slightly higher houtput for the typical hemispherical cavity because it better utilizes the mode volume.) However, this little detail may matter a great deal if you are attempting to retrofit an existing barcode scanner or other piece of equipment where the tube clips into a holder or where wiring is short, tight, or must be in a fixed location. For example, virtually all cylindrical laser heads require that the beam exits from the cathode-end of the tube. It is possible that you will be able to find two versions of many models of HeNe tubes if you go directly to the manufacturer and dig deep enough. However, this sort of information may not be stated where you are buying surplus or from a private individual, so you may need to ask.

    The examples above (as well as all of the other specifications in this and the following sections) are catalog ratings, NOT what might appear on the CDRH safety sticker (which is typically much higher). See the section: About Laser Power Ratings for info on listed, measured, and CDRH power ratings.

    Note how some of the power levels vary widely with respect to tube dimensions, voltage, and current. Generally, higher power implies a longer tube, higher operating/start voltages, and higher operating current - but there are some exceptions. In addition, you will find that physically similar tubes may actually have quite varied power output. This is particularly evident in the Melles Griot listings, below.

    These specifications are generally for minimum power over the guaranteed life of the tube. New tubes and individual sample tubes after thousands of hours may be much higher - 1.5X is common and a "hot" sample may hit 2X. My guess is that for tubes with identical specifications in terms of physical size, voltage, and current, the differences in power output are due to sample-to-sample variations. Thus, like computer chips, they are selected after manufacture based on actual performance and the higher power tubes are priced accordingly! This isn't surprising when considering the low efficiency at which these operate - extremely slight variations in mirror reflectivity and trace contaminants in the gas fill can have a dramatic impact on power output.

    I have a batch of apparently identical 2 mW Aerotech tubes that vary in power output by a factor of over 1.5 to 1 (2.6 to 1.7 mW printed by hand on the tubes indicating measured power levels at the time of manufacture).

    And, power output also changes with use (and mostly in the days of soft-sealed tubes, just with age sitting on the shelf):

    (From: Steve Roberts (osteven@akrobiz.com).)

    "I have a neat curve from an old Aerotech catalog of HeNe laser power versus life. The tubes are overfilled at first, so power is low. They then peak at a power much higher than rated power, followed by a long period of constant power, and then they SLOWLY die. It's not uncommon for a new HeNe tube to be in excess of 15% greater than rated power."

    And the answer to your burning question is: No, you cannot get a 3 mW tube to output 30 mW - even instantaneously - by driving it 10 times as hard!

    I have measured the operating voltage and determined the optimum current (by maximizing beam intensity) for the following specific samples - all red (632.8 nm) tubes from various manufacturers. (The starting voltages were estimated):

       Output     Tube Voltage       Tube         Supply Voltage     Tube Size
       Power      Operate/Start     Current        (75K ballast)    Diam/Length
     ----------  ---------------  ------------   ----------------  -------------
        .8 mW        .9/5  kV        3.2 mA           1.1 kV         19/135 mm
       1.0 mW       1.1/7  kV        3.5 mA           1.4 kV         25/150 mm
       1.0 mW       1.1/7  kV        3.2 mA           1.4 kV         25/240 mm
       2.0 mW       1.2/8  kV        4.0 mA           1.5 kV         30/185 mm
       3.0 mW       1.6/8  kV        4.5 mA           1.9 kV         30/235 mm
       5.0 mW       1.7/10 kV        6.0 mA           2.2 kV         37/350 mm
      12.0 mW       2.5/10 kV        6.0 mA           2.9 kV         37/475 mm
    

    Melles Griot, Uniphase, Siemens, PMS, Aerotech, and other HeNe tubes all show similar values.

    The wide variation in physical dimensions also means that when looking at descriptions of HeNe lasers from surplus outfits or the like, the dimensions can only be used to determine an upper (and possibly lower) bound for the possible output power but not to determine the exact output power (even assuming the tube is in like-new condition). Advertisements often include the rating on the CDRH safety sticker (or say 'max' in fine print). This is an upper bound for the laser class (e.g., Class IIIa), not what the particular laser produces or is even capable of producing. It may be much lower. For example, that Class IIIa laser showing 5 mW on the sticker, may actually only be good for 1 mW under any conditions! The power output of a HeNe laser tube is essentially constant and cannot be changed significantly by using a different power supply or by any other means. See the section: Buyer Beware for Laser Purchases.

    Also see the section: Locating Laser Specifications.

    In addition to power output, power requirements, and physical dimensions, key performance specifications for HeNe lasers also include:

    With manufacturers like Aerotech, Melles Griot, and Siemens, a certain amount of information can be determined from the model number. For example, here is how to decipher most of those from Melles Griot (e.g., 05-LHP-121-278):

    The vast majority of Melles Griot lasers you are likely to come across will follow this numbering scheme though there are some exceptions, especially for custom assemblies. (Some surplus places drop the leading '05-' when reselling Melles Griot laser tubes or heads so an 05-LHP-120 would become simply an LHP-120.)

    For other manufacturers like Spectra-Physics, the model numbers are totally arbitrary! (See the section: Spectra-Physics HeNe Lasers.)

    HeNe Tubes of a Different Color

    Although a red beam is what everyone thinks of when a HeNe laser is discussed, HeNe tubes producing green, yellow, and orange beams, as well as several infra-red (IR) wavelengths, are also manufactured. However, they are not found as often on the surplus market because they are not nearly as common as the red variety. In terms of the number of HeNe lasers manufactured, red is far and away the most popular, with all the others combined accounting for only 1 to 2 percent of the total production. In order of decreasing popularity, it's probably: red, green, yellow, infra-red (all IR wavelengths), orange. Non-red tubes are also more expensive when new since for a given power level, they must be larger (and thus have higher voltage and current ratings) due to their lower efficiency (the spectral lines being amplified are much weaker than the one at 632.8 nm). Operating current for non-red HeNe tubes is also more critical than for the common red variety so setting these up with an adjustable power supply or adjusting the ballast resistance for maximum output is recommended.

    Maximum available power output is also lower - rarely over 2 mW (and even those tubes are quite large (see the tables below). However, since the eye is more sensitive to the green wavelength (543.5 nm) compared to the red (632.8 nm) by more than a factor of 4 (see the section: Relative Visibility of Light at Various Wavelengths), a lower power tube may be more than adequate for many applications. Yellow (594.1 nm) and orange (611.9 nm) HeNe lasers appear more visible by factors of about 3 and 2 respectively compared to red beams of similar power. To get an idea of the actual perceived color at each wavelength, see the section: Color Versus Wavelength.

    Infrared-emitting HeNe lasers exist as well. In addition to scientific uses, these were sued for testing in the Telecom industry before sufficiently high quality diode lasers became available.Yes, you can have a HeNe tube and it will light up inside (typical neon glow), but if there is no output beam (at least you cannot see one), you could have been sold an infrared HeNe tube. However, by far the most likely explanation for no visible output beam is that the mirrors are misaligned or the tube is defective in some other way. Unfortunately, silicon photodiodes or the silicon sensors in CCD or CMOS cameras do not respond to any of the HeNe IR wavelengths, so the only means of determining if there is an IR beam are to use a GaAs photodiode, IR detector card, or thermal laser power meter. IR HeNe tubes are unusual enough that it is very unlikely you will ever run into one. However, they may turn up on the surplus market especially if the seller doesn't test the tubes and thus realize that these behave differently - they are physically similar to red (or other color) HeNe tubes except for the reflectivity of the mirrors as a function of wavelength. (There may be some other differences needed to optimize each color like the He:Ne ratio, isotope purity, and gas fill pressure, but the design of the mirrors will be the most significant factor and the one that will be most obvious with a bare eyeball, though the color of the discharge may be more pink for green HeNe tubes and more orange and brighter for IR HeNe tubes compared to red ones, more below.) Even if the model number does not identify the tube as green, yellow, orange, red, or infra-red, this difference should be detectable by comparing the appearance of its mirrors (when viewed down the bore of an UNPOWERED tube) with those of a normal (known to be red) HeNe tube. See the section: Determining HeNe Laser Color from the Appearance of the Mirrors. (Of course, your tube could also fail to lase due to misaligned or damaged mirrors or some other reason. See the section: How Can I Tell if My Tube is Good?.)

    As noted above, the desired wavelength is selected and the unwanted wavelengths are suppressed mostly by controlling the reflectivity functions of the mirrors. For example, the gains of the green and yellow lines (yellow may be stronger) are both much much lower than red and separated from each other by about 50 nm (543.5 nm versus 594.1 nm). To kill the yellow line in a green laser, the mirrors are designed to reflect green but pass yellow. I have tested the mirrors salvaged from a Melles Griot 05-LGP-170 green HeNe tube (not mine, from "Dr. Destroyer of Lasers"). The HR (High Reflector) mirror has very nearly 100% reflectivity for green but less than 25% for yellow. The OC (Output Coupler) also has a low enough reflectivity for yellow (about 98%) such that it alone would prevent yellow from lasing. The reflectivities for orange, red, and IR, are even lower so they are also suppressed despite their much higher gain, especially for the normal red (632.8 nm) and even stronger mid-IR (3,391 nm) line.

    However, to manufacture a tube with optimum and stable output power, it isn't sufficient to just kill lasing for unwanted lines. The resonator must be designed to minimize their contribution to stimulated emission - thus the very low reflectivity of the HR for anything but the desired green wavelength. Otherwise, even though sustained oscillation wouldn't be possible, unwanted color photons would still be bouncing back and forth multiple times stealing power from the desired color. The output would also be erratic as the length of the tube changed during warmup (due to thermal expansion) and this affected the longitudinal mode structure of the competing lines relative to each other. Some larger HeNe lasers have magnets along the length of the tube to further suppress (mostly) the particularly strong mid-IR line at 3,391 nm. (See the section: Magnets in High Power or Precision HeNe Laser Heads.)

    In addition, you can't just take a tube designed for a red laser, replace the mirrors, and expect to get something that will work well - if at all - for other wavelenghts. For one thing, the bore size and mirror curvature for maximum power while maintaining TEM00 operation are affected by wavelength.

    Furthermore, for these other color HeNe lasers which depend on energy level transitions which have much lower gain than red - especially the yellow and green ones - the gas fill pressure, He:Ne ratio, and isotopic composition and purity of the helium and neon, will be carefully optimized and will be different than for normal red tubes.

    Needless to say, the recipes for each type and size laser will be closely guarded trade secrets and only a very few companies have mastered the art of other color HeNe lasers, especially for high power (in a relative sort of way) in yellow and green. I am only aware of four companies that currently manufacture their own tubes: Melles Griot, Research Electro-Optics, Uniphase, and LASOS, with the last two having very few models to choose from. Others (like Coherent) simply resell lasers under their own name.

    And, the answer to that other burning question should now be obvious: No, you can't convert an ordinary red internal mirror HeNe tube to generate some other color light as it's (almost) all done with mirrors and they are an integral part of the tube. :) Therefore, your options are severely limited. As in: There are none. (However, going the other way, at least as a fun experiment, may be possible. See the section: Getting Other Lasing Wavelengths from Internal Mirror HeNe Laser Tubes.) For a laser with external mirrors, a mirror swap may be possible (though the cavity length may be insufficient to resonate with the reduced gain of other-color spectral lines once all loses taken into consideration). But realistically, this option doesn't even exist where the mirrors are sealed into the tube.

    There are also a few HeNe lasers that can output more than one of the possible colors simultaneously (e.g., red+orange, orange+yellow) or selectively by turning knob (which adjusts the angle of a Littrow or other similar dispersion prism) inside the laser cavity using a Brewster window HeNe tube). But such lasers are not common and are definitely very expensive. So, you won't likely see one for sale at your local hamfest - if ever! One manufacturer of such lasers is Research Electro-Optics (REO). See the section: Research Electro-Optics's Tunable HeNe Lasers.

    However, occasionally a HeNe tube turns up that is 'defective' due to incorrect mirror reflectivities or excessive gain or magic :) and actually outputs an adjacent color in addition to what it was designed to produce. I have such a tube that generates about 3 mW of yellow (594.1 nm) and a fraction of a mW of orange (611.9 nm) but isn't very stable - power fluctuates greatly as it warms up. Another one even produces the other orange line at 611.9 nm, and it's fairly stable. But, finding magic 'defective' tubes such as these by accident is extremely unlikely though I've heard of the 640.1 nm (deep red) line showing up on some supposedly good normal red (632.8 nm) HeNe tubes.

    As a side note: It is strange to see the more or less normal red-orange glow in a green HeNe laser tube but have a green beam emerging. A diffraction grating or prism really shows all the lines that are in the glow discharge. Red through orange, yellow and green, even several blue lines (though they are from the helium and can't lase under any circumstances)!! The IR lines are present as well - you just cannot see them.

    See the section: Instant Spectroscope for Viewing Lines in HeNe Discharge for an easy way to see many of the visible ones.

    Actually, the color of the discharge may be subtly different for non-red HeNe tubes due to modified gas fill and pressure. For example, the discharge of green HeNe tubes may appear more pink compared to red tubes) which are more orange), mostly due to lower fill pressure. The fill mix and pressure on green HeNes is a tricky compromise among several objectives that conflict to some extent including lifetime, stability (3.39 um competition), and optical noise. This balancing act and the lower fill pressure are why green HeNes don't last as long as reds. Have I totally confused you, color-wise? :)

    The expected life of 'other color' HeNe tubes is generally much shorter than for normal red tubes. This is something that isn't widely advertised for obvious reasons. Whereas red HeNe tubes are overfilled initially (which reduces power output) and they actually improve with use to some extent as gas pressure goes down, this luxury isn't available with the low gain wavelengths - especially green - everything needs to be optimal for decent performance.

    The discharge in IR HeNe tubes may be more orange and brighter due to a higher fill pressure. Again, this is due to the need to optimize parameters for the specific wavelength.

    Determining HeNe Laser Color from the Appearance of the Mirrors

    Although most HeNe lasers are the common red (632.8 nm) variety (whose beam actually appears orange-red), you may come across unmarked HeNe tubes and just have to know what color output the produce without being near a HeNe laser power supply.

    Since the mirrors used in all HeNe lasers are dielectric - functioning as a result of interference - they have high reflectivity only around the laser wavelength and actually transmit light quite well as the wavelength moves away from this peak. By transmitted light, the appearance will tend to be a color which is the complement of the laser's output - e.g., cyan or blue-green for a red tube, pink or magenta for a green tube, blue or violet for a yellow tube. Of course, except for the IR variety, if the tube is functional, the difference will be immediately visible when it is powered up!

    The actual appearance may also depend on the particular manufacturer and model as well as the length/power output of the laser (which affects the required reflectivity of the OC), as well as the revision number of your eyeballs. :) So, there could be considerable variation in actual perceived color. Except for the blue-green/magenta combination which pretty much guarantees a green output HeNe tube, more subtle differences in color may not indicate anything beyond manufacturing tolerances.

    The chart below in conjunction with Appearance of HeNe Laser Mirrors will help to ideentify your unmarked HeNe tube. (For accurate rendition of the graphic, your display should be set up for 24 bit color and your monitor should be adjusted for proper color balance.)

          HeNe Laser          High Reflector (HR)          Output Coupler (OC)
       Color  Wavelength   Reflection   Transmission    Reflection   Transmission
     ------------------------------------------------------------------------------
        Red    632.8 nm    Gold/Copper      Blue        Gold/Yellow   Blue/Green
       Orange  611.9 nm   Whitish-Gold      Blue       Metallic Green   Magenta
       Yellow  594.1 nm   Whitish-Gold      Blue       Metallic Green   Magenta
       Green   543.5 nm   Metallic Blue  Red/Orange    Metallic Green   Magenta
    
       Broadband (ROY)    Whitish-Gold      Blue
    
        IR     1,523 nm    Light Green  Light Magenta   Light Green  Light Magenta
        IR     3,391 nm       Gold (Metal) Coated         Neutral        Clear
    

    The entry labeled 'Broadband' relates to the HR mirror in some unusual multiple color (combinations of red and/or orange and/or yellow) internal mirror tubes as well as those with an internal HR and Brewster window for external OC optics. And, the yellow and orange tubes may actually use broad band HRs. The OCs would then be selected for the desired wavelength(s) and may also have a broad band coating.

    For low gain tubes, they play games with the coatings. I guess it isn't possible to just make a highly selective coating for one wavelength that's narrow enough to have low reflectivity at the nearby lines so they won't lase. So, one mirror will be designed to fall off rapidly on one side of the design wavelength, the other mirror on the other side. That's one reason front and back mirrors on yellow and green tubes in particular have very different appearances.

    As noted, depending on laser tube length/output power, manufacturer, and model, the appearance of the mirrors can actually vary quite a bit but this should be a starting point at least. For example, I have a Melles Griot 05-LHR-170 HeNe laser tube that should be 594.1 nm (yellow) but actually outputs some 604.6 nm (orange) as well. It's mirror colors for the HR and OC are almost exactly opposite of those I have shown for the yellow and orange tubes! I don't know whether this was intentional or part of the problem And, while from this limited sample, it looks like the OCs for orange, yellow, and green HeNe lasers appear similar, I doubt that they really are in the area that counts - reflectivity/transmission at the relevant wavelengths.

    I do not have any data for the 1,152 nm (IR) HeNe laser wavelength. If you have access to a 1,152 nm or any other non-red HeNe tube and would like to contribute or comment on their mirror colors (or anything else), please send me mail via the Sci.Electronics.Repair FAQ Email Links Page.

    More on Other Color HeNe Lasers

    Here are some comments on the difficulty of obtaining useful visible output from HeNe lasers at wavelengths other than our friendly red (632.8 nm):

    (From: Steve Roberts (osteven@akrobiz.com).)

    You do need a isotope change in the gases for green, and a He:Ne ratio change for the other orange and yellow lines. In addition, the mirrors to go to another line will have a much lower output transmission. The only possible lines you'll get on a large frame HeNe laser will be the 611.9 nm orange and 594.1 nm yellow. The green requires external mirror tubes in excess of a meter and a half long and a Littrow prism to overcome the Brewster losses and suppress the IR.

    The original work on green was done by Rigden and Wright. The short tubes have lower losses because they have no Brewsters and thus can concentrate on tuning the coatings to 99.9999% reflectivity and maximum IR transmission. There is one tunable low power unit on the market that does 6 lines or so, but only 1 line at a time, and the $6,000 cost is kind of prohibitive for a few milliwatts of red and fractional milliwatt powers on the other lines. But, it will do green and has the coatings on the back side of the prism to kill the losses.

    Also look for papers by Erkins and Lee. They are the fellows who did the green and yellow for Melles Griot and they published one with the energy states as part of a poster session at some conference. Melles Griot used to hand it out, that's how I had a copy, recently thrown away.

    Even large HeNe lasers such as the SP-125 (rated at 50 mW of red) will only do about 20 mW of yellow, with a 35 mW SP-127 you're probably only looking at 3 to 5 mW of yellow. And, for much less then the cost of the custom optics to do a conversion, you can get two or three 4 to 5 mW yellow heads from Melles Griot. I know for a fact that a SP-127 only does about 3 mW of 611.9 with a external prism and a remoted cavity mirror, when it does 32 mW of 632.8 nm.

    So in the end, unless you have a research use for a special line, it's cheaper to dig up a head already made for the line you seek, unless you have your own optics coating lab that can fabricate state-of-the-art mirrors.

    I have some experience in this, as I spent months looking for a source of the optics below $3,000.

    (From: Sam.)

    I do have a short (265 mm) one-Brewster HeNe tube (Melles Griot 05-LGB-580) with its internal HR optimized for green that operates happily with a matching external green HR mirror (resulting in a nice amount of circulating power) but probably not with anything having much lower reflectivity to get a useful output beam. In fact, I could not get reliable operation even with the HR from a dead green HeNe laser tube as the Brewster window would not remain clean enough for the time required to align the mirror. See the section: A Green One-Brewster HeNe Laser for more info.

    I would expect an SP-127 to do more than 3 to 5 mW of yellow, my guess would be 10 to 15 mW with optimized mirrors but no tuning prism. If I can dig up appropriate mirrors, I intend to try modifying an SP-127 to make it tunable and/or do yellow or green. :)

    (From: Lynn Strickland (stricks760@earthlink.net).)

    You can find 640.1 nm in a lot of red HeNe lasers. I have a paper on it somewhere, and cavity design can influence it to a large extent. If you have a decent quality grating, it's pretty easy to pick up. 629 nm is the one you don't see too much.

    I'm no physicist, but the lower gain lines can lase simultaneously with the higher gain lines, no problem, as long as there is sufficient gain available in the plasma. It's really pretty easy to get a HeNe laser to output on all lines at the same time (if you have the right mirrors). The trick is optimizing the bore-to-mode ratio, gas pressure, and isotope mixture to get good TEM00 power. Usually the all-lines HeNe lasers are multi (transverse) mode. I don't know of anyone who makes them commercially though - at least not intentionally.

    Steve's Comments on Superradiance and the 3.39 um HeNe Laser

    Generally, when a gas laser is superradiant, there is a limit to its maximum power output (with exceptions for nitrogen and copper vapor laser, although nitrogen's upper limit is defined by the maximum cavity length into which you can generate a 300 ns or less excitation pulse.

    The 3.39 um HeNe laser's gain is still, like all other HeNe lines limited by a wall collision to return the excited atoms to the ground state. 3.39 um HeNe lasers have larger bores then normal HeNe lasers, and the bores are acid etched to fog them and create more surface area, but still the most power I've ever seen published was 40 mW - nothing to write home about. The massive SP-125, the largest commercial HeNe laser, could be ordered with a special tube and special optics for 3.39 um, and it still only did about 1/3rd the visible power. Superradiance and ultimate power are not tied together.

    The reason 3.39 um got all the writeups it did was that it started on the same upper state as all the other HeNe lines, was easily noticed when it sapped power from the visible line, and was, at the time, a exotic wavelength for which there were few other sources.



  • Back to Helium-Neon Lasers Sub-Table of Contents.

    Viewing Spectral Lines in Discharge, Other Colors in Output

    For accurate measurements, you'll need an optical instrument such as a monochromator or spectrophotometer or optical spectrum analyzer. See the section: Monochromators. But to simply see the complexity of the discharge spectrum inside the bore of a HeNe laser tube, it's much easier and cheaper.

    (Spectra for varioue elements and compounds can be easily found by searching the Web. The NIST Atomic Spectra Database has an applet which will generate a table or plot of more spectral lines than you could ever want.)

    Instant Spectroscope for Viewing Lines in HeNe Discharge

    It is easy to look at the major visible lines. All it takes is a diffraction grating or prism. I made my instant spectroscope from the diffraction grating out of some sort of special effects glasses - found in a box of cereal, no less! - and a monocular (actually 1/2 of a pair of binoculars).

    The shear number of individual spectral lines present in the discharge is quite amazing. You will see the major red, orange, yellow, and green lines as well as some far into the blue and violet portions of the spectrum and toward the IR as well. All of those shown in Bright Line Spectra of Helium and Neon will be present as well as many others not produced by the individual gas discharges. There are numerous IR lines as well but, of course, these will not be visible.

    Place a white card in the exit beam and note where the single red output line of the HeNe tube falls relative to the position and intensity of the numerous red lines present in the gas discharge.

    As an aside, you may also note a weak blue/green haze surrounding the intense main red beam (not even with the spectroscope). This is due to the blue/green (incoherent) spectral lines in the discharge being able to pass through the output mirror which has been optimized to reflect well (>99 percent) at 632.8 nm and is relatively transparent at wavelengths some distance away from these (shorter and longer but you would need an IR sensor to see the longer ones). Since it is not part of the lasing process, this light diverges rapidly and is therefore only visible close to the tube's output mirror.

    Dynamic Measurement of Discharge Spectra

    The following is trivial to do if you have a recording spectrometer and external mirror HeNe laser. For an internal mirror HeNe laser tube, it should be possible to rock one of the mirrors far enough to kill lasing without permanently changing alignment. If you don't have proper measuring instruments, don't worry, this is probably in the "Gee wiz, that's neat but of marginal practical use" department. :)

    (From: George Werner (glwerner@sprynet.com).)

    Here is an effect I found many years ago and I don't know if anyone has pursued it further.

    We had a recording spectrometer in our lab which we used to examine the incoherent light coming from the laser discharge. This spectrum when lasing was slightly different from the spectrum when not lasing, which one can expect since energy levels are redistributed. As with most detectors, ours used a chopper in the spectrometer light beam and a lock-in amplifier.

    Instead of putting the chopper in the path of light going to the spectrometer, I put it in the path of the internal laser beam, so that instead of an open/closed signal going to the amplifier it was a lasing/not-lasing signal. What was recorded then was three kinds of spectrum lines: some deflected positive in the normal way, others deflected negative, and the third group were those that were unaffected by chopping, in which case when we passed over the line we only saw an increase in the noise level. Setting up such a test is easy. The hard part is interpreting the data in a meaningful way.

    Other Color Lines in Red HeNe Laser Output

    When viewing spectral lines in the actual beam of a red HeNe laser, you may notice some very faint ones far removed from the dominant 632.8 nm line we all know and love. (This, of course, also applies to other color HeNe lasers.)

    For HeNe lasers, the primary line (usually 632.8 nm) is extremely narrow and effectively a singularity given any instrumentation you are likely to have at your disposal. Any other lines you detect in the output are almost certainly from two possible sources but neither is actual laser emission:

    Since the brightness of the discharge and superradiance output should be about the same from either mirror, using the non-output end (high reflector) should prove easier (assuming it isn't painted over or otherwise covered) since the red beam exiting from this mirror will be much less intense and won't obscure the weak green beam.

    Note that argon and krypton ion lasers are often designed for multiline output where all colors are coherent and within an order of magnitude of being equal to each other in intensity or with a knob to select an individual wavelength. Anything like this is only rarely done with HeNe lasers because it is very difficult (and expensive) due to the low gain of the non-red lines. For more information, see the sections: HeNe Tubes of a Different Color and Research Electro-Optics Tunable HeNe Lasers.



  • Back to Helium-Neon Lasers Sub-Table of Contents.

    Demonstration HeNe Lasers, Weatherproofing

    Putting Together a Demonstration HeNe Laser

    For a classroom introduction to lasers, it would be nice to have a safe setup that makes as much as possible visible to the students. Or, you may just want to have a working HeNe laser on display in your living room! Ideally, this is an external mirror laser where all parts of the resonator as well as the power supply can be readily seen. However, realistically, finding one of these is not always that easy or inexpensive, and maintenance and adjustment of such a laser can be a pain (though that in itself IS instructive).

    The next best thing is a small HeNe laser laid bare where its sealed (internal mirror) HeNe tube, ballast resistors, wiring, and power supply (with exposed circuit board), are mounted inside a clear Plexiglas case with all parts labeled. This would allow the discharge in the HeNe tube to be clearly visible (and permit the use of the Instant Spectroscope for Viewing Lines in HeNe Discharge). The clear insulating case prevents the curious from coming in contact with the high voltage (and line voltage, if the power supply connects directly to the AC line), which could otherwise result in damage to both the person and fragile glass HeNe tube when a reflex action results in smashing the entire laser to smithereens!

    A HeNe laser is far superior to a cheap laser pointer for several reasons:

    Important: If this see-through laser is intended for use in a classroom, check with your regulatory authority to confirm that a setup which is not explicitly CDRH approved (but with proper laser class safety stickers) will be acceptable for insurance purposes.

    For safety with respect to eyeballs and vision, a low power laser - 1 mW or less - is desirable - and quite adequate for demonstration purposes.

    The HeNe laser assembly from a barcode scanner is ideal for this purpose. It is compact, low power, usually runs on low voltage DC (12 V typical), and is easily disassembled to remount in a demonstration case. The only problem is that many of these have fully potted "brick" type power supplies which are pretty boring to look at. However, some have the power supply board coated with a rubbery material which can be removed with a bit of effort (well, OK, a lot of effort!). For example, this HeNe Tube and Power Supply is from a hand-held barcode scanner. A similar unit was separated into its Melles Griot HeNe Tube and HeNe Laser Power Supply IC-I1 (which includes the ballast resistors). These could easily be mounted in a very compact case (as little as 3" x 6" x 1", though spreading things out may improve visibility and reduce make cooling easier) and run from a 12 VDC, 1 A wall adapter. Used barcode scanner lasers can often be found for $20 or less.

    An alternative is to purchase a 0.5 to 1 mW HeNe tube and power supply kit. This will be more expensive (figure $5 to $15 for the HeNe tube, $25 to $50 for the power supply) but will guarantee a circuit board with all parts visible.

    The HeNe tube, power supply, ballast resistors (if separate from the power supply), and any additional components can be mounted with standoffs and/or cable ties to the plastic base. The tube can be separated from the power supply if desired to allow room for labels and such. However, keep the ballast resistors as near to the tube as practical (say, within a couple of inches, moving them if originally part of the power supply board). The resistors may get quite warm during operation so mount them on standoffs away from the plastic. Use wire with insulation rated for a minimum of 10 kV. Holes or slots should be incorporated in the side panels for ventilation - the entire affair will dissipate 5 to 10 Watts or more depending on the size of the HeNe tube and power supply. (However, if you want to take this thing outdoors, see the section: Weatherproofing a HeNe Laser.

    When attaching the HeNe tube, avoid anything that might stress the mirror mounts. While these are quite sturdy and it is unlikely that any reasonable arrangement could result in permanent damage, even a relatively modest force may result in enough mirror misalignment to noticeably reduce output power. And, don't forget that the mirror mounts are also the high voltage connections and need to be well insulated from each other and any human contact! The best option is probably to fasten the tube in place using Nylon cable ties, cable clamps, or something similar around the glass portion without touching the mirror mounts at all (except for the power connections).

    Provide clearly marked red and black wires (or binding posts) for the low voltage DC or a line cord for AC (as appropriate for the power supply used), power switch, fuse, and power-on indicator. Label the major components and don't forget the essential CDRH safety sticker (Class II for less than 1 mW or Class IIIa for less than 5 mW).

    See: Sam's Demo HeNe Laser as an example (minus the Plexiglas safety cover), contructed from the guts of a surplus Gammex laser (probably part of a patient positioning system for a CT or MRI scanner). The discrete line operated power supply is simple with the HV transformer, rectifier/doubler, filter, multiplier, and ballast resistors easily identified. This would make an ideal teaching aid.

    See the suppliers listed in the chapter: Laser and Parts Sources.

    The Ultimate Demonstration HeNe Laser

    Rather than having a see-through laser that just outputs a laser beam (how boring!), consider something that would allow access to the internal cavity, swapping of optics, and modulation of beam power. OK, perhaps the truly ultimate demo laser would use a two-Brewster tube allowing for interchangeable optics at both ends, be tunable to all the HeNe spectral lines, and play DVD movies. :) We'll have to settle for something slightly less ambitious (at least until pigs fly). Such a unit could consist of the following components:

    Everything needed for such a setup is readily available or easily constructed at low cost but you'll have to read more to find out where or how as each of the components are dealt with in detail elsewhere in Sam's Laser FAQ (but I won't tell you exactly where - these are all the hints you get for this one!).

    A system like this could conceivably be turned into an interactive exhibit for your local science museum - assuming they care about anything beyond insects and the Internet these days. :) There are some more details in the next section.

    Guidelines for a Demonstraton One-Brewster HeNe Laser

    The following suggestions would be for developing a semi-interactive setup whereby visitors can safely (both for the visitor and the laser) adjust mirror alignment and possibly some other parameters of laser operation. The type of one-Brewster (1-B) HeNe laser tube like the Melles Griot 05-LHB-570. See the sections starting with: A One-Brewster HeNe Laser Tube Note that the 05-LHB-570 is a wide bore tube that runs massively multi (transverse) mode with most mirrors configurations unless an intracavity aperture is added. This is actually an advantage for several reasons:

    1. The multi-transverse mode structure is interesting in itself and provides additional options for showing how it can be controlled.
    2. Mirror alignment is easier and the tube will lase over a much wider range of mirror orientation.
    3. Output power is higher for its size and power requirements.

    Here are some guidelines for designing an interactive exhibit:

    Weatherproofing a HeNe Laser

    If you want to use a HeNe laser outside or where it is damp or very humid, it will likely be necessary to mount the tube and power supply inside a sealed box. Otherwise, stability problems may arise from electrical leakage or the tube may not start at all. There will then be several additional issues to consider:



  • Back to Helium-Neon Lasers Sub-Table of Contents.

    Interesting, Strange, and Unidentified HeNe Lasers

    When Your Laser Doesn't Fit the Mold

    The vast majority of HeNe tubes and laser heads you will likely come across will be basically similar to those described in the section: Structure of Internal Mirror HeNe Lasers. However, when rummaging through old storerooms or offerings at hamfests or high-tech flea markets, you may come across some that are, to put it bluntly, somewhat strange or weird. I would expect that in most cases, these will be either really old, developed for a specific application, or higher performance lab quality models which are just not familiar to someone used to surplus specials. Consider these to be real finds if only for the novelty value! Refurbishing of the lab-grade lasers may be worth the effort and/or expense resulting in a truly exceptional (and possibly valuable) instrument. And, simply from an investment point of view, it is amazing what some old (and even totally useless dead) but strange lasers have fetched on places like Ebay Auction recently. See the section: Auctions. Here are some descriptions of what I and others have come across:

    Segmented HeNe Tubes

    I have several medium power HeNe tubes that do not have a single long bore (capillary) but rather it is split into about a half dozen sections with a 1 or 2 mm gap between them. Each of the short capillaries is fused into a glass separator without any holes. Two of these tubes look like the more common internal mirror HeNe tubes except for the multiple segments as shown below:

    
                    ____________________________________________
                   /       |            |            | _______  \
            Anode |\       |            |            |        \  | Cathode
            .-.---' \.-----'-----..-----'-----..-----'------.  '-'---.-.
        <---| |::::  :===========::===========::============:   :::::| |===> 
            '-'---. /'-----.-----''-----.-----''-----.------'  .-.---'-'
                  |/       |            |            | _______/  |
                   \_______|____________|____________|__________/ 
    
    

    Or, for a more aesthetic rendition, see: Helium-Neon Laser Tube with Segmented Bore.

    The third has Brewster angle windows at both ends with an external (fixed) HR mirror and an external screw-adjustable OC mirror. The cathode is also in a side-tube rather than the more typical coaxial can type but is otherwise similar.

    Only one of the 3 HeNe tubes of this type that I have works at all and it has a messed up gas fill probably due to age despite its being hard sealed. Its output is perhaps 1 or 2 mW (where it should be around 20 mW). However, to the extent that it works, there doesn't appear to be anything particularly interesting or different about its behavior. Of the other two tubes, one has a broken off mirror (don't ask) but before the mishap, did generate some decent power (perhaps 5 to 10 mW but still nowhere near its 20 mW rating) but erratically. I suspect this was due to a contaminated gas fill resulting in low gain rather than the segmented design since a couple of other similar length tubes of conventional construction behaved in a similar manner. The funky tube with the external mirrors was not hard-sealed at the Brewster windows and leaked over time.

    The only obvious effect this sort of structure should have on operation would be to provide gas reservoirs at multiple locations rather than only at the cathode-end of the bore as is the case with most 'normal' HeNe tube designs. I do not know whether this matters at all for a low current HeNe discharge. Therefore, the reason for the unusual design remains a total mystery. It may have been to stabilize the discharge, to suppress unwanted spectral lines, easier to maintain in alignment than a single long capillary, or something else entirely. Then again, perhaps, the person who made the tubes just had a spurt of excessive creativity. :)

    I have also acquired a complete laser head with a similar tube, rated 25 mW max with a sticker that says it did 22 mW at one time. It is unremarkable in most respects but does have a large number of IR suppression magnets arranged on 3 sides over most of the length of the tube. Currently, it does not lase because the gas is slightly contaminated but it is also misaligned. The discharge color is along the lines of "Minor - Low Outupt" in Color of HeNe Laser Tube Discharge and Gas Fill so there may be some hope.

    Strange High Power HeNe Laser

    This is a on-going project on finding information and restoring a strange HeNe laser acquired by: Chris Chagaris (pyro@grolen.com). Research to determine the specifications and requirements involved postings to sci.optics, email correspondence, and a bit of luck - seeing a photograph of the mysterious laser in a book on holography.

    Here is the original description (slightly reformatted):

    (From: Chris Chagaris (pyro@grolen.com).)

    I have recently acquired what I have been told is a 35 mW Helium Neon laser head. However, it is unlike anything I have ever seen before. (See the diagram, below.)

    
                    Capillary tube/external starting electrodes
    
       Starting pulse  o-------+----------------------+
                              _|_                    _|_
        ||     //==================================================\\     ||
        ||   //=====. .==================. .=================. .=====\\   ||
                    |||                  | |                 |||     
      Mirror        '|'  25K             | |           25K   '|'        Mirror
             Anode 1 +---/\/\---o +HV    | |   +HV o---/\/\---+ Anode 2
                         .---------------' '--------------.
                      ---|-+                            +-|---
                         |  ) Main               Spare (  |
                      ---|-+                            +-|---
                         '--------------------------------'
     
                  Gas reservoir with heated cathodes and getters
    
    
    Jodon Laser Head shows the construction in more detail.

    Here is one reply Chris received by email from someone else named Marco. As you will see, this turns out to be a dead end.

    (From: Marco.)

    "Hi Chris,

    This seems to be a really old one, or from other location than west Europe, Japan, and the USA. The 'SM' could be an abbreviation for Siemens, they had manufactured lasers from 1966 to 1993; until last year Zeiss/Jena has taken over the production; and since 1997 Lasos has overtaken the production by a kind of management buy-out. You can send them the number, it will be possible that they know it. Contact Dr. Ledig. I will also look around if I can help you further.

    HeNe lasers with a heated filament are no longer built. To see if it still runs you can attach a 3.3 V supply to the filament and see if it glows red, not more, to much heat will destroy it. You could use transformers from tube amplifiers for the filament and an old HeNe laser power supply for the anode.

    This laser will need around 5,000 V and 10 mA I think. If you could only get a smaller power supply, you may not see any laser beam, but you can see if it will trigger."

    (From: Sam.)

    Here are my 'guesses' about this device. (I have also had email discussions with Chris.)

    I agree with much of what Marco had said.

    Unfortunately, Chris has determined that regassing will be required and he is equipped to do this but there will be some delay in the results.....

    (From Chris (a few months later).)

    Well, tonight while looking through the "Holography Handbook" I spied what looked suspiciously like that elusive laser I have. It said it was made by Jodon Engineering Associates of Ann Arbor, MI. I immediately called them and was fortunate to have the engineer (Bruce) who has built their tubes for the last 18 years answer the phone. I told him of my plight and read off the numbers that were on the plasma tube. Sure enough, it was one of their early lasers. They have been manufacturing HeNe's since 1963. He provided me with many of the details that I had been searching for.

    I explained that I planned on trying to re-gas this antique and he offered to help with what ever information I needed. It is truly refreshing to find someone in the industry that is willing to help the amateur without an eye on just making a profit.

    I finally located a small supply of HeNe gas, just yesterday. While visiting North Country Scientific to purchase a pair of neon sign electrodes (in Pyrex), I mentioned my need for a small amount of laser gas for my laser refurbishing project. (This was formally Henry Prescott's small company that supplied all the hard to find components for the Scientific American laser projects.) Lo and behold, there on a shelf, covered with dust, were a few of the original (1964?) 1.5 liter glass flasks filled with the 7:1 He/Ne gas mix. He let them go at a very decent price!

    (Hopefully, those tiny weeny slippery He atoms have not leaked out! --- sam)

    Now, about the magnets:

    The magnets are of rectangular shape, one inch long, 3/4 inch in width and 3/8 inch thick. There are a total of 26 magnets placed flat against the top (14) and flat against the bottom (12) of the plasma tube as viewed from the side. All but the ones on the very ends of the plasma tube are attached exactly opposite from one another, top and bottom. (See Jodon Laser Head for placement and field orientation).

    They are placed with the long side (1") parallel to the plasma tube with the north and south poles along this axis.

    They appear to be of ceramic construction and not very powerful. Sorry, I don't have any means of measuring the actual field strength.

    The current status of this project is that the laser needs to be regassed. Chris is equipped to do this and has acquired the needed HeNe gas mixture.

    To be continued....

    Photos of a similar but much larger Jodon HeNe laser (3.39 um IR in this case) can be found in the Laser Equipment Gallery (Version 1.41 or higher) under "Jodon Helium-Neon Lasers".

    The Aerotech LS4P HeNe Laser Tube

    This is a 1970s HeNe laser tube contributed by Phil Bergeron who also refired the getter (see below) before sending it to me. It was probably manufactured just before companies realized that putting the mirrors inside the gas envelope would work just fine and is best and cheapest. The construction of the LS4P is generally similar to that of modern tubes with a hollow cold cathode and narrow bore. However, it is basically a two-Brewster laser with mirrors sealed to short glass extensions that are the same diameter as the main tube. See Aerotech LS4P HeNe Laser Tube.

    The Brewster windows appear to be glued in place. The OC is a normal 7 or 8 mm diameter curved mirror glued to the inside of the output aperture plate - basically a metal washer. The HR is a square, almost certainly planar mirror, glued to the outside of a 4 screw adjustable mount of sorts. Why is the HR square? Probably because it was cut from a large coated plate, rather than being coated individually. Why 4 screws instead of 3, making mirror adjustment much more of a pain? Another unsolved mystery of the Universe. :) Though it's not obvious from the photo, the Brewster windows aren't quite oriented the same - the angle differs by perhaps 5 degrees - so the gain is already slightly reduced from what's possible. However, I have been assured that this laser did meet specifications when new. The output is still polarized - probably half way in between - but the polarization extinction ratio is certainly lower than it could be. If the laser is still under warranty, it might be worth complaining. ;) As can be seen, this sample still lases after refiring the getter and then letting it run for several hours to allow the cathode to adsorb remaining impurities. The refiring was actually done using a can crusher demonstration apparatus and the remains of the getter coating can be seen as the ugly brown ring encircling the tube just to the left of the anode connection. I don't know whether the getter coating was any the worse for wear after that exciting event as I was not present.

    What's a "can crusher"? :) Basically an electromagnetic pulse (EMP) generator: Discharge a really large high voltage capacitor bank into a couple of turns of wire wrapped around the tube (in this case). Since the getter electrode in this tube is conveniently oriented as a ring around the bore and thus acts as the secondary of a transformer, the high current discharge induced enough current to heat the ring to heat it instantly. I wish I could have witnessed that!

    The output is only about 2 mW though, when the spec is 4 mW. Spectral line measurements of the discharge in the bore suggest that it's low on helium and low pressure in general. A helium soak may be in its future.

    I have a most likely even earlier Aerotech tube which is constructed along the same lines as the LS4P except that:

    1. It is nearly 3 times as long and twice the diameter.
    2. It has a side-arm cathode.
    3. The HR mirror is round instead of square.
    4. The bore is segmented as described in the section: Segmented HeNe Tubes.

    It doesn't lase and has a very pink discharge - running it now to see if that helps but not much hope by the time it gets that far. The tube originally put out 22 mW according to a hand-written sticker. I had picked it up on eBay in a big blue case and substituted another only slightly newer hard-sealed Aerotech tube which at least lased - 6 mW, wow. :) Its problem appears to be a bad recipe for the gas fill, mirrors, or both.

    A Really Old HeNe Laser

    This one isn't really that strange but it must be quite old. The American Optical Corporation model 3100 was a red (632.8 nm, the usual wavelength) HeNe laser that used an external mirror tube with a heated filament for the cathode.

    The cover on one unit bears a sticker from El Don Engineering, 2876 Butternut, Ann Arbor, Michigan 48104, Phone: 1-313-973-0330. The laser was serviced and repaired on 9/28/80 and its output was 2.3 mW, TEM00. Another one had "Tube No. 1170, 2.1 mW TEM00, Jan. 13, 1970". I wonder if they still exist. :)

    The AO-3100 appears to be made by Gaertner (whoever they are/were, their model number is not known). Two samples are shown in the Laser Equipment Gallery (Version 2.08 or higher) under "Assorted Helium-Neon Lasers".

    The bore is about 2.5 mm in diameter which is extremely wide for a red HeNe laser. I would have expected it to be multi-mode (not TEM00). However, both samples say TEM00 and they must know. The Brewster windows are Epoxy-sealed so needless to say, most of these lasers no longer work (aside from the slight problem that when I received the first tube from one, it was in pieces. :( Not that I expected it to work, but intact would have been nicer.

    Not surprisingly, most of these lasers no longer lase or even light up since the tubes are soft-seal and long past their expiration dates. But if you happen to own a working time machine, it seems that Metrologic was supplying replacement tubes and power supplies for the AO-3100 as late as 1980. And, a bargain at only $225 and $100, respectively. You'll have to pay with old bills though. :)

    However, I now have obtained an AO-3100 that does still lase. More below.

    Lasing specifications:

    HeNe laser tube:

    Resonator:

    Power Supply:

    I have acquired a sample of the AO-3100 that was quite battle weary but the tube did survive cross-county shipping. The case, on the other hand, looks like it lost a fight with one of those Sherman Tanks. :) It was bent and dented in multiple places. How the tube didn't turn to a million bits of glass is amazing.

    The better thing about this laser is that the discharge color of the old soft-seal tube looks pretty good and there is still a very distinct getter spot. A measurement of the ratio of the He 587.56 nm and Ne 585.25 nm spectral lines in the discharge show that they are about equal in intensity. This means that the He:Ne fill pressure is still decent, though compared to a barcode scanner HeNe laser tube I tested, about 1/2 the helium intensity. A helium soak might be in its future.

    After realigning the mirrors and cleaning the Brewster windows, I now have 0.35 mW of red photons squirting out the front of the laser. Probably only the front mirror was misaligned originally, but since I had to remove them both to get the rubber Brewster covers off, realignment of both were required. Fortunately, getting an alignment laser beam through the wide bore was straightforward. The HR mirror mount was then installed and adjusted to return the alignment beam cleanly through the bore. The OC mirror mount was then installed and that's when it became clear that its alignment was way off. Now I wonder who did that. :) Once the alignment screws were tweaked to center its reflected spot, a bit of fiddling resulted in a weak beam. Some mirror walking and Brewster cleaning helped, but it's not finished.

    The discharge color appears to be improving as it is run as well but output power has been decreasing as it is run. I hadn't realized that the spec'd lifetime is only around 100 hours - and I've put on 5 or 10 percent of that just testing it! It might be a power supply problem though since it produces a nice bright beam for an instant when started, but then settles down to perhaps 100 uW on a good day. I do turn it on for a few seconds almost everyday just to keep it happy.

    The photos for "Gaertner/American Optical 3100 Helium-Neon Laser 2" in the Laser Equipment Gallery are of this laser in action. The color rendition of my digital camera isn't very good. The color in the main bore and larger sections of tubing actual should look close to that in normal HeNe lasers. But the cathode glow (the bright blob) is actually more yellow, (though not quite the yellow in these photos. :) The double coiled glowing hot filament is clearly visible in Views 03 to 05. A careful examination of Views 03 and 06 reveals the scatter from the Brewster windows at each end of the tube. Note the large difference in scatter size due to the hemispherical resonator. View 07 shows that there is indeed a beam from this laser (if that wasn't obvious from the Brewster windows), though due to its relatively low power, bore light is competing for attention.

    The Dual Color Yellow/Orange HeNe Laser Tube

    Multiline operation is common in ion lasers where up to a dozen or more wavelengths may be produced simultaneously depending on the optics and tube current. However, most HeNe lasers operate at a single wavelength. The only commercial HeNe lasers I know of that are designed to produce more than one wavelength simultaneously are manufactured by Research Electro-Optics (REO). They have 1,152/3,390 nm and 1,523/632.8 nm models.

    Through screwups in manufacturing (incorrect mirror formula, extra "hot" emission, etc.), an occasional HeNe laser may produce weak lasing at one or more ("rogue") wavelengths other than those for which it was designed. For red tubes, the most likely spurious wavelength is a deeper red at 640 nm since it is also a fairly high gain line. For a low gain yellow laser, orange is most likely since it is a relatively close wavelength and any goofup with the mirror reflectivities may allow it to lase.

    I have a tube made by Melles Griot, model number 05-LYR-170, which is about 420 mm long and 37 mm in diameter and can be seen as the middle tube in Three HeNe Tubes of a Different Color Side-by-Side. Its only unusual physical characteristics are that the bore has a frosted exterior appearance (what you see in the photo is not the reflection of a fluorescent lamp but the actual bore). Apparently, larger Melles Griot HeNe tubes are now made with this type of bore - it is centerless ground for precise fit in the bore support. I don't know if the inside is also frosted; that is supposed to reduce ring artifacts. And, of course, the mirrors have a different coating for the non-red wavelengths.

    According to the the Melles Griot catalog, this is a HeNe laser tube operating at 594.1 nm with a rated output of 2 mW. However, my sample definitely operates at both the yellow (594.1 nm) and orange (604.6 nm) wavelengths (confirmed with a diffraction grating) - to some extent when it feels like it. The output at the OC-end of the tube is weighted more towards yellow and has a power output of up to 4 mW or more (you'll see why I say 'up to' in a minute). The output at the HR-end of the tube has mostly orange and does a maximum of about 1 mW. Gently pressing on the mirrors affects the power output as expected but also varies the relative intensities of yellow and orange in non-obvious ways. They also vary on their own. The mirror alignment is very critical and the point of optimum alignment isn't constant. In short, very little about this tube is well behaved. :)

    Why there should be this much leakage through the HR is puzzling. The mirror is definitely not designed for outputting a secondary beam or something like that as there is no AR coating on its outer surface. Thus, that 1 mW is totally wasted. Perhaps, this was an unsuccessful attempt to kill any orange output from the OC. The OC's appearance is similar to that of a broadband coated HeNe HR - light gold in reflection, blue/green in transmission. The HR appears similar to one for a green HeNe laser - light metallic green in reflection, deep magenta in transmission. (However, it's hard to see the transmission color in the intact tube. The OC may be more toward deep blue and the HR may be more toward purple.)

    As would be expected where two lines are competing for attention in a low gain laser like this, the output is not very stable. As the tube warms up and expands - or just for no apparent reason - the power output and ratio of yellow to orange will gradually change by a factor of up to 10:1. Very gently pressing on either mirror (using an insulated stick for the anode one!) will generally restore maximum power but the amount and direction of required pressure is for all intents and purposes, a random quantity. If the mirror adjuster/locking collar is tweaked for maximum output at any given time, 5 minutes later, the output may be at a minimum or anywhere in between.

    I surmise - as yet unconfirmed - that at any given moment, the yellow and orange output beams will tend to have orthogonal polarizations. But, as the distance between the mirrors changes, mode cycling will result in the somewhat random and unpredictable shifting of relative and total output power as the next higher mode for one color competes with the opposite polarized mode of the other. Is that hand waving or what? :)

    A few strong magnets placed along-side the tube reduce this variation somewhat. I'm hoping that adding some thermal control (e.g., installing the tube in an aluminum cylinder or enclosed case) may help as well. I was even contemplating the construction of a servo system that would dither the cathode-end mirror mount to determine the offset direction that increases output and adjusts the average offset to maximize the output. This might have to be tuned for yellow or orange - an exclusive OR, I don't know if maximizing total optical power will also maximize each color individually.

    Using an external red HR or OC (99 percent) mirror placed behind the tube's HR mirror, I was able to obtain red at 632.8 nm as well as a weak output at the other orange line (611.9 nm), and at times, all four colors were lasing simultaneously. :) See the section: Getting Other Lasing Wavelengths from Internal Mirror HeNe Laser Tubes.

    (From: Steve Roberts (osteven@akrobiz.com).)

    Ah, the Melles Griot defects... These show up from time to time and are highly prized in the light show community for digitizing stations and personal home lumia displays.

    The yellow/orange combo is not a goof. I've seen a 7 mW version of that that was absolutely beautiful, but rejected because it was too hot. It's probably slight differences in the length of the tube or bore size. They cut them for a given mode spacing, but fill them all at once with the same gas mixture. A few companies do make dual line tubes, but you can imagine the initial cost is murder.

    I used to have a short tube that switched from red (632.8 nm) to orange (611.9 nm) that appeared brighter then the red when it felt like it.

    I sometimes wonder if there are a few more HeNe transitions we don't know about. I know they exist in ion lasers. I have seen a 575 nm yellow line in krypton that's not on the manufacture's data and a red in Kr that is between 633 and 647 nm. I had that red in my own laser. 575 nm is preferred for show lasers because it doesn't share transitions with 647 nm like 568 nm does.

    When I was interviewing at AVI in Florida they used 4 color 4 scan pair projectors for digitizing - 6 mW of yellow, 5 mW of green, and 8 mW of red, all from HeNe lasers. The blue came up from an ILT ion laser in the basement to each of the four stations via optical fiber. The guy who owned AVI said if you call Melles Griot and ask nicely they will grade some tubes for you for a slight extra cost. Methinks they make all the special colors up and tune them in power somehow, so they can make a price differential, those lines should be consistent by now.

    Every two years of so it seems Melles Griot cleans out their scrap pile, and somebody always seems to get there hands on them, grades them and sells em.

    (From: Daniel Ames (Dlames2@aol.com).)

    The yellow and orange HeNe energy transitions are very similar and possibly competing with each other, especially if the optics are questionable. I have learned that Melles Griot and other HeNe laser manufacturers sometimes suffer from costly mistake on a batch of tubes due to the optics being incorrectly matched to the tube and/or the optics themselves not being correct for the desired output wavelength. One such batch was supposed to be the common red (632.8 nm) but the optics actually caused the gain of the orange to be high enough that the output contained both red and orange (611.9 nm). Then I believe they are rejected and tossed out, only to be saved by professional dumpster divers to show up on eBay or elsewhere. Actually, these misfits such as the yellow/orange tube can be quite fascinating. It would be interesting to shine a 632.8 nm red HeNe laser right through the bore of that tube while powered and see what color the output is. I have been told that if you shine a red HeNe through a green HeNe that it will cause the green wavelength to cease. I have not had this opportunity to try this, so I do not know for sure what really happens, maybe the red just overpowered the green beam. This could be verified with 60 degree prism or diffraction grating on the beam exiting the opposite end of the green tube. Happy beaming. :)

    (From: Sam.)

    I have tried the experiment of shining a red HeNe laser straight down the bore of a green HeNe laser (my green One-Brewster tube setup). I could detect no significant effect using a low power (1 or 2 mW) laser. This isn't surprising given that the intracavity power of the green laser was probably in the hundreds of mW range so the loss from the red beam would be small in a relative sense. However, wavelength competition effects are quite real as evidenced from experiments with the two color 05-LYR-170 tube.

    The Weird Three-Color PMS HeNe Laser Head

    I recently picked up a surplus PMS (now Research Electro-Optics) LHYR-0100M HeNe laser head (with power supply) on eBay for a whopping $30 including shipping. This model supposedly produces a pure yellow (594.1 nm) multimode beam with a minimum power output of 1 mW. See REO LHYR-0100M. But mine is happily outputting the yellow (594.1 nm) and two orange (604.6 and 611.9 nm) lines (determined by splitting the beam with a diffraction grating, something I routinely do with all newly acquired HeNe lasers!).

    Its actual total power output after warmup is over 2.50 mW. The 594.1 nm (most intense, TEM01* doughnut) and 604.6 nm (TEM10* or TEM10 depending on its mood) are relatively stable but the 611.9 nm (least intense, TEM01) visibly fluctuates. Nonetheless, overall power stability and mode cycling behavior are similar to that of a typical medium power red (632.8 nm) HeNe laser, which contrasts dramatically with the very unstable yellow/orange Melles Griot laser described above. REO does have a couple of dual wavelength HeNe laser heads listed on their Laser Products Page but nothing like this. They are 1,152/3,391 nm and 1,523/632.8 nm.

    There is also an additional mystery 2 pin connector on this laser head. The resistance between pins is about 20 ohms and I assume it to be a heater on the OC mirror, though driving it with about 10 V had no detectable effect whatsoever.

    However, I wonder if there is also some screwup in the REO model descriptions as the size of this laser head actually matches that of the REO LHYR-0200M, being almost 17" in length rather than the 13" listed for the LHYR-0100M. I kind of doubt that shorter length can be accounted for by dramatic improvements in HeNe laser technology since my sample was manufactured (1988), though I suppose that's a possibility. But the electrical specifications of the two lasers are supposed to be identical, which doesn't make sense and I don't believe in coincidences. :) And the output power of my sample peaks at 6.5 mA which isn't consistent with the specs for either the LHYR-0100M or LHYR-0200M which are both 5.25 mA.

    The PMS/REO External Resonator Particle Counter HeNe Laser

    This is a particle counter assembly labeled: ULPC-3001-CPC, 18861-1-16 with the actual HeNe laser tube labeled: LB/5T/1M/E(HS), PMS-4877P-3594. The unit is shown in PMS/REO ULPC-3001 Particle Counter HeNe Laser Assembly. When I found it on eBay, the listing was for a One-Brewster tube. However, this one is really strange. For one thing, it is not a Brewster tube but rather a somewhat normal internal mirror HeNe laser tube. Well, at least normal by PMS/REO standards - mostly metal with Hughes-style glasswork at the anode-end. Except it is a very multimode tube having an output that is rather high (greater than 7.5 mW) for its length (11 inches between mirrors) and power requirements 1,900 V/5.25 mA. That would be only modestly interesting. But there is an additional mirror beyond the OC (inside in the area between the two red dots next to the red sticker at the left) which forms an external resonant cavity with the (internal) OC mirror. The external HR mirror is actually coated on the end of a transparent crystal about 1 cm in length, mounted by a pair of electrodes attached to opposite sides which most likely is piezoelectrically active and probably changes length when a voltage is applied to it. A photodiode is mounted beyond the crystal (far left in photo). The signal from the photodiode shows resonance effects at several relatively low frequencies (two dominant ones are around 175 and 350 kHz). The waste beam from the HeNe laser HR mirror can actually be seen to flicker and become much lower in power at the resonance points. The crystal and photodiode may be used to dither the output so that the effects of the inherent laser noise are eliminated. I doubt its supposed to be a very high frequency because the wires to the electrodes are not shielded. It might also be used in a feedback loop at low frequencies.

    PMS has a patent for this setup - U.S. Patent #4,594,715: Laser With Stabilized External Passive Cavity. By linearly oscillating the external mirror at a modest frequency (enough to produce a few cm/sec of movement), the resulting Doppler broadening of the wavelength spectrum will be sufficient to effectively decouple the external cavity from the active cavity. This gets around the stability issues present with open cavity (e.g., Brewster window) particle counter designs. There is a great deal of information in the patent on this and other principles of operation.

    Any hapless particles that may pass through the beam in the cavity between the OC of the HeNe laser tube and the external mirror will result in scatter detectable from the side. A large reflector and aspheric lens collects the side-scatter and focuses it on another photodiode (under yellow CAUTION sticker). There is a preamplifier in the box.

    It gets better. Viewing the waste beam out the unused HR-end of the tube (far right) with a diffraction grating reveals that the tube is lasing on the normal red line, but also on both of the HeNe orange lines (604.6 nm and 611.9 nm), three other red lines (629.4 nm, 635.2 nm, and 640 nm), *and* on the very rare Raman shifted red line at 650 nm. And there may be others but it's difficult to resolve them since the beam is multimode and the spectra cannot be focused to small spots. This is similar but even better than what I've observed in my experiments using external mirrors with normal internal mirror HeNe laser tubes although this one seems particularly stable with little obvious variation in the intensities of the lines, at least over a period of a few minutes. Obtaining the 650 mm line is particularly unusual, especially since it is so stable. See the section: Getting Other Lasing Wavelengths from Internal Mirror HeNe Laser Tubes. These non-632.8 nm lines are probably not an objective of the design but are just an interesting artifact.

    I have estimated the reflectivities for the three mirrors which are in this laser. These values are based on measurements of the output power of the HeNe laser tube without the external mirror (about 8 mW after warmup) and the assumption that the internal OC is about 99 percent:

                                                Power with external HR?
        Mirror Description     Reflectivity         No         Yes
      ----------------------------------------------------------------------
        HeNe laser tube HR     99.99%             0.9 mW     1.00 mW
        HeNe laser tube OC     99% (assumed)      8.00 mW   80.00 mW
        External HR            99.9%                --       0.09 mW
    

    The "Power" refers to the optical power passed by the specified mirror depending on whether the external HR mirror is present and aligned. In the case of the HeNe laser tube OC with the external HR, this is the circulating power in the external cavity which is what's available for the particle scatter. Note that the circulating power inside the HeNe laser tube is around 10 WATTS but isn't accessible.

    And here are some comments on particle counter technology:

    (From: Phil Hobbs (pcdh@us.ibm.com).)

    There exist particle counters using external resonant cavities, and also intracavity Nd:YAG setups. Intracavity measurements *look* as though they give you amazing sensitivity, but they usually don't. Not only is the circulating power amazingly sensitive to temperature gradients and tiny amounts of schlieren from air currents, but the signal you get is wildly nonlinear and highly position-dependent. Intracavity measurements are a great way to lose sleep and hair. Passive cavities are usually much better, and nonresonant multipass cells are better still.

    The Ancient Hughes HeNe Laser Head

    These old laser heads have been showing up in various places including eBay with one particular model number being: 3184H. See Hughes Model 3184H HeNe Laser Head. They date from the 1970s, some possibly quite early in the decade. Their external appearance is unremarkable - a heavy gold-colored cylinder about 12.25 inches long and 1.75 inches in diameter, with end-plates each attached with 4 cap screws. Power connections to most are via a pair of rather thin red and green wires (with red being the positive input), though Later ones may use an Alden cable. There is a 30K ohm, 5 W metal film internal ballast resistor which by itself is insufficient for stable operation with most power supplies - an external ballast of 50K to 75K is required. The power supply that appears to be intended to drive this laser head has a 60K ballast on board. (See the section: Hughes HeNe Laser Power Supply for the Model 3184H Laser.) So far, ho hum. :)

    But the remarkable thing about these laser heads revolves around what is inside: A two-Brewster HeNe laser tube! Except for some very early units, the tips of the 2-B tube extend to very nearly touch the mirror plates. On some early ones, the tube is about an inch shorter. (I don't know if this is just a physical difference or whether the newer tubes are actually slightly higher power.) So, these are really external mirror lasers in a nice compact stable package. See View Inside Hughes Model 3184H HeNe Laser Head and Hughes Model 3184H HeNe Laser Head Construction. The end-plates press against aluminum gaskets which allow for mirror adjustment as well as providing a mostly decent environmental seal. The mirror glass is held in place in the end-plate with an aluminum ring press-fit against a rubber cushion. Note the threaded inserts to provide steel-on-steel contact for the adjustment screws. The Brewster window and potting material can be seen within the massive aluminum cylinder - the wall thickness of the sections near each end is at least 5/16ths inch! It's actually made up of 3 pieces (in addition to the end-plates) press-fit together along with a rubber O-ring and an additional rubber ring (maybe just squirted in before completing the press-fit) for sealing. The center section has thinner walls and I found out that clamping it in a vice will crunch the tube. :( But at least the broken heads still make decent hammers. :) The actual tube is the typical Hughes-style but with B-windows at both ends. Although the potting material is soft rubber and not RTV, it appears to mostly fill the inner space, just allowing the Brewster stem at the anode/wiring-end of the tube to poke out and nearly covering the cathode-end, so removing the tube intact would be a challenge. More below.

    Several other models may also contain 2-B tubes like this including the 3176H and 3194H.

    Unfortunately, dating from the 1970s, most samples are deader than the standard door nail. They might light up but don't lase. I acquired two of these awhile ago. One, from 1976, appeared to have approximately the correct discharge color (as best as I can determine viewing it from the end) and the tube voltage seemed reasonable. But, no red photons no matter what I've tried. Another, from 1979, did start a couple years ago, though the discharge color and tube voltage characteristics were obviously wrong. But now it only flashes, indicating that it's nearly up to air. However, several of the oldest lasers, dating from the early 1970s, have survived and lase and even produce an output power not much different than what was measured in 1973, the last time they were tested! The beam is TEM00 with low divergence and less scatter than many modern HeNe lasers. I suspect that for those fortunate individuals, the Brewster windows were optically contacted instead of being sealed with Epoxy.

    One of the working heads I tested outputs about 3.5 mW at 6.5 mA with an operating voltage to the head of about 1,610 V. The test power in 1973 was 3.4 mW. Based on the 4 in the model number and a CDRH sticker rating of 6.5 mW, I suspect that the rated output power is actually 4 mW. Power continues to increase slightly above 6.5 mA. This may mean that either the optimal current is higher, or more likely, that the tube is low on helium or has some other slight gas fill problem, or it's just high mileage. (Although the power supply that apparently went with these heads is not very well regulated, its behavior suggests that 6.5 mA is correct.) Due to the way the tube is potted inside the metal cylinder, there is no way to easily assess the discharge spectrum to evaluate the gas fill without test instruments.

    The mirrors appear to be hard-coated with the HR being flat and the OC having an RoC of about 30 cm. This results in a nearly hemispherical resonator with a mirror spacing just under 30 cm, confirmed by the very small spot visible on the HR mirror when the laser is operating. The OC is AR coated on its outer surface (though it is not as robust as modern AR coatings), and on most of the laser heads, the HR is fine-ground on its outer surface.

    Interestingly, the bore of the 3184H appears to be tapered and is wider at the OC-end than at the HR-end. This makes sense to more closely match the mode volume of the hemispherical resonator and thus increase the gain slightly. A tapered bore was apparently an optimization that was popular in the early days of HeNe lasers but went out of fashion due to its higher cost compared to using a uniform size capillary tube for the bore. I've only come across a tapered bore (or at least noticed it) in one modern-style HeNe laser tube, a Melles Griot 05-LHP-170, manufacturing date unknown but it has a serial number of 675P - sounds kind of old! With this asymmetry, the HR and OC cannot simply be swapped without likely seeing a severe penalty in output power. It also would likely not be advantageous to use a confocal or any other symmetric configuration. However, going to a long-radius hemispherical resonator might work even better than the existing arrangement.

    With 4 screws holding the end-plates in place against the aluminum gasket, mirror adjustment is somewhat awkward but with persistence, optimal alignment including mirror walking can be performed relatively quickly. However, the aluminum gasket isn't ideal, so for testing, I've replaced it with a rubber O-ring to provide some real compliance. That is, until I decide what to do with the 2-B tube inside! :)

    For a description of several more of these lasers, and a test jig and tests using external mirrors, see the section: Some Semi-Antique Hughes Laser Heads.

    Where one is really determined to get the tube out, here is more info on what's involved. But why bother? Aside from aesthetics, it's perfectly happy in there and very well protected. The risk of destroying the tube may not be worth the rewards. The press-fit end-sections must be pulled straight out (not twisted) with something along the lines of a gear puller as they are a very tight metal-to-metal press fit with ridges all around. Or, they can be carefully cut off with a metal cutting lathe or band saw. But serious vibrations will likely destroy the tube. Then, the rubber potting material would have to be chipped/gouged/cut/sliced away to actually extract the tube. Then all the remnents of the rubber stuff must be removed from the tube.

    Having said that, I was able to get the end-sections off of a dead laser head without serious tools. (I'm not about to risk a good one!) Since the center section has a slightly larger outside diameter than the end-sections, an aluminum HeNe laser head clamp tightened just snug around the end-section provided a way of pressing on the center section to pull the end-sections free. Four clearance holes were drilled in a 1/2" thick piece of aluminum plate and 4-40 screws were then passed through these holes and threaded into the laser head. By carefully tightening these screws in a cyclic manner (e.g., 1,2,3,4,1,2...), the end-section could be pulled out about 1/8". Once this was done, the HeNe head clamp was removed and shorter screws were used to attach the 1/2" plate directly to the head. With the plate clamped in a vice, the entire head could be worked back and forth until it came free. (Alternatively spacer plates and/or shorter screws could be added/substituted to continue the original process until the end-section comes free.) This was not fun, a set of screws survived for only about one end-section, and as noted, this is really only the beginning of the tube extraction process. I have not yet attempted to go any further. But someone else has succeeded in removing the tube. Apparently it wasn't much fun.

    The Ohmeda Raman Gas Analyzer PMS One-Brewster Laser

    This unit is somewhat similar to a particle counter in that there is a very high-Q 1-B HeNe laser tube with a second HR mirror some distance away. In between is a space for an absolute filtered unknown gas to pass through with 8 "viewing ports" - 4 on each side. Sensitive photon counting detectors would normally go behind individual narrow band filters on each port, each with a different center wavelength.

    Raman spectroscopy is used to identify gases by passing a laser beam through the unknown sample. Raman scattering results in a shift toward longer wavelengths depending on the atomic/molecular composition of the gas. By measuring the intensity of the Raman scatter at several longer wavelengths, the gas composition can be determined. For these units, the relevant gases were apparently N2, O2, and N2O based on "linearization constants" printed on a label on the lasers.

    To get any sort of sensitivity, the beam must be high power since a very small percentage of photons actually undergo the Raman shift. For the Ohmeda unit, this is achieved by utilizing the intracavity power between 2 super polished HR mirrors and super-polished Brewster window. While I don't know for sure what the intracavity power should be, based on tests of the mirror reflectivities and output power with an OC mirror with known reflectivity, it is at least several watts and could be over 100 W!

    The relevant patents include:

    The first one describes the principles of Raman spectroscopy, but the actual drawings do not correspond to the Ohmeda laser assembly. But the other two have diagrams which closely match the specimen I have though I'm not sure which it is.

    The laser tube is made by PMS and is physically similar to the REO/PMS tunable 1-B tubes, but its internal HR mirror appears to be coated so that in conjunction with the HR mirror at the other end of the cavity, the reflectance for 632.8 nm is maximized. Using a 60 cm RoC OC mirror with a reflectance of approximately 98 percent at 632.8 nm, the laser produces about 5.4 mW, multimode. I assume that with an optimal OC mirror, the power would be somewhat higher. (This test was done without the Brewster prism assembly. There would be some loss with the prism present in the cavity.)

    At 5 mW - implying 250 mW of intracavity power with the 98 percent OC - the waste beam is about 5 uW and the reflectivity of the internal HR mirror is thus about 99.998 percent. There is very little scatter visible on the B-window under these conditions. (I did have to clean it, but there is a handy access port that can be used for this purpose.) If there were no other losses, putting a similar HR at the other end would result in 125 W of intracavity power! Of course, this is impossible as there ARE other losses, but it is likely to be several watts and perhaps much more. With an SP-084 HR, the output from this mirror was about 0.5 mW and the output from the internal HR was 32 uW corresponding to about 1.5 W of intracavity power. Not too shabby. But with the PMS HR (and Brewster prism), the waste beam power for 633 nm was a whopping 171 uW implying about 8.5 WATTs inside. Not too shabby at all. :) I have cleaned the Brewster prism with no significant change in performance. However, a careful cleaning of all three surfaces would almost certainly improve things some more, especially for this case. Interestingly, with the PMS mirrors, the beams exiting the laser appear to be nice TEM00.

    When used in the normal way, there is a 632.8 nm narrow band filter between the external mirror and a silicon photodiode. So, that is almost certainly used to monitor the power transmitted by that mirror, and by inference, intracavity power.

    The 632.8 nm intracavity power would no doubt be greater without the prism but that's where it gets interesting. With the prism in place, the wavelength is tunable with both orange wavelengths being easily selectable. Here are the stats for two simmilar laser assemblies with different dates of manufacture:

    Laser 1 (2004):

                   Power from    <------- External Mirror ------->   Intracavity
       Wavelength  Internal HR     Type     Reflectivity    Power       Power
     -----------------------------------------------------------------------------
        632.8 nm       5 uW      60 cm OC     98.0%       5,400 uW     0.25 W
         "    "       32 uW      SP-084 HR    99.966%        50 uW     1.5  W 
         "    "      172 uW       PMS HR      99.9984%      120 uW     8.5  W !!
        611.9 nm     147 uW        "   "        ---       1,120 uW      ---
        604.0 nm      26 uW        "   "        ---       0.410 uW      ---
    

    Laser 2 (2003):

                   Power from    <------- External Mirror ------->   Intracavity
       Wavelength  Internal HR     Type     Reflectivity    Power       Power
     -----------------------------------------------------------------------------
        632.8 nm      381 uW      PMS HR        ???        141 uW      ???
        611.9 nm    1,120 uW       "   "        ---         93 uW      ---
        604.0 nm      710 uW       "   "        ---         32 uW      ---
    

    I did not test Laser 2 with non-PMS mirrors, thus the exact reflectivity and intracavity power is not known.

    I do not know what the reflectivity of the internal HR is at 604 nm and 611.9 nm for either laser so the intracavity power is not known for these wavelengths either. The purpose of the Brewster prism is no doubt to select only one of the possible wavelengths, which based on the specifications of the filter between the external mirror and photodiode, is no doubt 632.8 nm. The very nice behavior on the orange lines is thus simply an artifact of the mirrors being so highly reflective at 632.8 nm. But note how the power balance between the two mirrors seems to be more or less reversed for Lasers 1 and 2. So, although the internal mirror for both lasers is not AR coated and the external mirror is, the coating formulas appear to have been interchanged.

    It would be quite risky to try to run the laser with only the external PMS HR but no prism as the mirror glass is glued in place. While the plate it's glued to could be mounted directly on the adjustable mount, the mirror is very exposed and susceptible to damage. So, I'm probably not going to attempt that.

    Here are how the 8 filters intercepting Raman light from the side of the lasers were labeled:

       Location             Part Number             Wavelength
     -----------------------------------------------------------
          1A       BARR #4 4 375-003 7819 1 1993     781.9 nm
          1B       BARR #1 2 373-030 7777 2 3100     777.7 nm
          1C       BARR #9 2 373-024 6938   3991     693.8 nm
          1D       BARR #8   373-027 7421 2 2093     742.1 nm
          2A       BARR #8   373-026 7364 1 2293     736.4 nm
          2B       BARR      373-022 6753   4391     675.3 nm
          2C       BARR #1   373-021 6629 1 2193     662.9 nm
          2D       BAR  #473 CAVITY  7017 1 2293     701.7 nm
    
        Ext HR     BARR #1 2 374-002 6238   4102     632.8 nm
    

    I'm deducing the center wavelength based on the part number and observations of visible light transmittance for those in the 600 to 700 nm range. I don't think the exact location of the side mirrors matters except to the extent that it matches up with the appropriate sensor channel.

    While these center wavelengths would suggest a rather large wavelength shift, this apparently is the case for gases. But wouldn't there also have to be a 632.8 nm rejection filter in front of the detectors or else that would overwhelm the small Raman signal?

    While I had expected the photosensors to be PhotoMultiplier Tubes (PMTs) as in the similar Raman system using an argon ion laser, these are most likely Avalanche PhotoDiodes (APDs). They are in TO18 cans clamped to a ThermoElectric Cooler (TEC, Peltier device) on a large heatsink. Inside the can, there is a little gold colored block perhaps 1.5 mm square, with a 0.5 mm blue dot in the middle, which I presume is the active area. The APD is probably a S9251-05 (or very similar), one of the Hamamatsu S9251 Series Avalanche Photodiodes. There's a fair amount electronics to go with them, though nothing obviously recognizable.



  • Back to Sam's Laser FAQ Table of Contents.
  • Back to Helium-Neon Lasers Sub-Table of Contents.
  • Forward to Commercial HeNe Lasers.


    Sam's Laser FAQ, Copyright © 1994-2007, Samuel M. Goldwasser, All Rights Reserved.
    I may be contacted via the
    Sci.Electronics.Repair FAQ Email Links Page.